BUILD UP Skills – BULGARIA –

Analysis of the national status quo

Current Status, Practices and Trends in the Building Sector in Bulgaria

July 2012
The sole responsibility for the content of this publication etc lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission is responsible for any use that may be made of the information contained therein.

Further information

More details on BUILD UP Skills can be found at www.buildupskills.eu

More details on the IEE programme can be found at http://ec.europa.eu/intelligentenergy

More details on BUILD UP Skills Bulgaria Project can be found at www.buildupskillsbg.com
Table of Contents

0. Executive summary ... 7
1. Introduction ... 10
2. Objectives and methodology ... 11
3. Characterisation of the building sector .. 13
4. National policies and strategies to contribute to the EU 2020 energy targets in buildings ... 16
5. Statistics on building and energy sectors ... 28
6. Existing VET provisions ... 42
7. Skills gaps between the current situation and the needs for 2020 66
8. Barriers ... 97
9. Conclusions ... 103
10. Authors/contributors ... 105
11. References ... 106
12. Glossary ... 109
List of Figures:

Fig. 1. Results from the regular survey conducted by the NSI to measure the business climate in the building sector (%). Source: NSI, p.13

Fig. 2. Turnover in construction. Source: NSI, p.14

Fig. 3. Employment in construction. Source: NSI, p.14

Fig. 4. Share of GVA generated in construction of the GVA total of the national economy. Source: Centre for Liberal Strategies, p.15

Fig. 5. Data about the non-formal economy during the period 2000-2010. Source: NSI, p.15

Fig. 6. Net revenue from sales by types of construction, BGN million. Source: NSI, p.29

Fig. 7. Number of employees in construction. Source Central Professional Registry of Builders with the Bulgarian Construction Chamber, p. 32

Fig. 8. Number of trainees in vocational high schools and schools during the 2011/2012 academic year, professional direction electrical engineering and energy sector, p. 53

Fig. 9. Number of trainees in vocational high schools and schools during the 2011/2012 academic year, professional direction “Construction”, p. 54

Fig. 10. Number of schools offering training in professions in professional direction “Electrical engineering and energy sector”, p. 54

Fig. 11. Number of schools offering training in professions in professional direction “Construction”, p. 55

Fig. 12. Number of vocational training centres licensed to conduct training in professions in professional direction “Electrical engineering and energy sector”, p. 55

Fig. 13. Number of vocational training centres licensed to conduct training in professions in professional direction “Construction”, p. 56

Fig. 14 (Fig. 3). Employment in construction. Source: NSI, p. 66

Fig. 15. Employed persons – total for the national economy and in the building sector, 2000-2010, in thousand people (according to NSI data), p. 67

Fig. 16. Skills forecast, Bulgaria. Source: Cedefop, p. 67

Fig. 17. Skills forecast, EU27+. Source: Cedefop, p. 68

Fig. 18. Data about the employment in the building sector. Source: NSI and the Bulgarian National Bank, p. 70

Fig. 19. Number of trainees in the vocational training centres in 2010, professional direction “Electrical engineering and energy sector”, p. 73

Fig. 20. Number of trainees in the vocational training centres in 2010, professional direction “Construction”, p. 73

Fig. 21. Number of conducted training courses by crafts in 2010. Source: NAVET, p. 74

Fig. 22. Supply of craftsmen for installation and maintenance of systems for renewable energy in buildings, pp.78-79

Fig. 23. Qualification level of the existing workforce for installation and maintenance of systems for renewable energy in buildings, pp. 79-80
List of Tables:

Table 1. Comparison indicators for RES potential in Bulgaria, p.8
Table 2. Forecast about the final energy consumption and indicators for comparison under the baseline and the target scenarios. Source: Energy Strategy of Bulgaria till 2020, p. 20
Table 3. Forecast about primary energy consumption and indicators for comparison under the baseline and target scenarios. Source: Energy Strategy of Bulgaria till 2020, pp. 20-21
Table. 4. Residential buildings by type of building structure as by 1 February 2012. Source: NSI, p. 28
Table. 5. Commissioned new residential buildings and dwellings, p. 29
Table. 6. Number of enterprises and employees in the building sector. Source: Central Professional Registry of Builders with the Bulgarian Construction Chamber, p. 31
Table. 7. Distribution of the employed persons by labour contract and position in the building sector by classes of the National Classification of Professions and Positions for the period 2008-2009, pp. 32-34
Table 8. Data about the employment in the building sector. Source: NSI and the Bulgarian National Bank, pp. 34-35
Table 9. Employed persons – total for the national economy and in the building sector, 2000-2010, in thousand people (according to NSI data), p. 35
Table 10. Structure of energy production and energy consumption. Source: NSI, pp. 36-37
Table 11. Final energy consumption by types of energy resources. Source: NSI, pp. 37-38
Table 12. Final energy consumption. Source: NSI, p. 39
Table 13. Renewable energy sources for 2010 – consumed energy. Source: NSI, pp. 40-41
Table 14. Expanded list of professions for VET under the BUILD UP Skills Project Bulgaria, pp.48-52
Table 15. Courses and training schemes on energy efficiency and renewable energies in buildings. Source: NAVET, pp. 61-62
Table 16. Distribution of the employed persons by labour contract and position in the building sector by classes of the National Classification of Professions and Positions for 2010, p.69
Table 17. Change in the employment by age groups in the building sector during the period 2008-2010, pp. 70-71
Table 18. Number of pupils acquired 2nd professional qualification level, p.72
Table 19. Number of pupils acquired 3rd professional qualification level, p. 72
Table 20. Renewable energy perspectives (estimation of market growth) in Bulgaria, pp. 75-76
Table 21. Energy efficiency measures perspectives (estimation of market growth) in Bulgaria, pp.76-77
Table 23. Expert estimation of current workforce for professions: Technician in energy equipment and systems – RES – 5220308; Installer of energy equipment and systems – RES – 5220408, p. 84
Table 25. Expert estimation of current workforce for profession: Civil engineering and architecture - 5820101, pp. 85-86
Table 26. Expert estimation of current workforce for profession: Construction – Civil engineering technician – Hydro-engineering – 5820103, p. 87
Table 27. Expert estimation of current workforce for profession: Construction – Builder – Indoor sheathings and surfaces – 5820306, p.87

0. Executive summary

This report has been prepared on the basis of statistical data and forecasts for the future development of the building sector and more specifically in the field of energy efficiency and building workforce qualification in Bulgaria. The report is focused on the secondary training and education in the vocational high schools and on the vocational training centres licensed by National Agency for Vocational Education and Training (NAVET). It has been compiled in accordance with the requirements of the EU Executive Agency for Competitiveness and Innovations (EACI).

The Energy Strategy of the Republic of Bulgaria until 2020 reflects the political vision of the Government on the European development of the country, aligned to the current European framework of the energy policy and the global trends in the development of energy technologies. The energy strategy is oriented towards overcoming the major challenges facing the Bulgarian energy sector at this point of time, namely:

1) High energy intensity of Gross Domestic Product (GDP). Despite the positive improvement trends, the energy intensity of the national GDP is 89% higher than the EU average (with due account taken on the purchasing power parity).

2) The high dependence on imported energy resources. Bulgaria ensures 70% of its gross consumption through import. The dependence on the import of natural gas, crude oil and nuclear fuel is practically complete and is characterized by traditionally one-sided orientation towards the Russian Federation.

3) The need of environment-friendly development:

The main priorities of the Bulgarian Energy Strategy in the context of the European energy policy are reflected in five directions:

- To guarantee the security of energy supply;
- To achieve the targets for renewable energy;
- Energy efficiency improvement;
- Development of a competitive energy market and policy oriented towards meeting energy demand;
- Protection of consumers’ interests.

The gross inland consumption in Bulgaria for 2008 is 19889 ktoe, for 2009 - 17482 ktoe, and for 2010 - 17 829 ktoe. The energy available for final consumption in Bulgarian households for 2010 is 2262 ktoe and the combined data for households, commerce and public authorities show consumption of 3433 ktoe. These data can be compared to total energy available for final consumption: 9217 ktoe for 2010 (compared to 10739 ktoe for 2008 and 9205 ktoe for 2009).

The contribution of the building sector is measured by activities that improve the energy efficiency in the building stock and more particularly in the multi-family residential buildings.

The impact of the energy consumption of buildings is mainly in the statistically observed sectors of households and services, which thus form the national target. It is assumed that the final energy consumption in buildings amounts to 100% in total for the sector “Households”, and in the final consumption in the “Services” sector the consumption of buildings is in the range of 70%-90%. For calculation purposes we
assume a share of 80% and that all the sectors participate proportionally in the achievement of the 9% target.

Under these assumptions and bearing in mind the above mentioned objectives of the National Action Plan on Energy Efficiency, the national target for the building sector is 2938.8 GWh (252,854 ktoe). Taking into account the anticipated savings, presented in the Second National Action Plan on Energy Efficiency by sectors, the implementation for the building sector would be 2806.2 GWh (241,445 ktoe). The reason for this is the lower implementation in the household sector as compared to the figures laid down as a target for the sector. Due to the high energy intensity of the economy, it is believed that these targets will be achieved; however, strict control on the application of existing and future legislative measures is deemed to be crucial for the execution of the national goals.

According to the National Action Plan on Renewable Energy Sources (RES) the forecast RES potential of Bulgaria is about 4500 ktoe per year. Biomass (36%) and hydro energy (31%) account for the highest shares in it.

<table>
<thead>
<tr>
<th>COMPARISON INDICATORS</th>
<th>BASELINE SCENARIO</th>
<th>TARGET SCENARIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2020</td>
<td>2020</td>
</tr>
<tr>
<td>Gross Domestic Product (000 M€)</td>
<td>21.9</td>
<td>34.7</td>
</tr>
<tr>
<td>Gross domestic consumption (mtoe)</td>
<td>20</td>
<td>21.6</td>
</tr>
<tr>
<td>Renewable energy (mtoe)</td>
<td>1.1</td>
<td>1.71</td>
</tr>
<tr>
<td>Share of RES (%)</td>
<td>9.4</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 1. Comparison indicators for RES potential in Bulgaria

The mandatory national target for the Republic of Bulgaria until 2020 is 16% total share of renewable energy in the gross final energy consumption. In quantitative measures, in a scenario with implemented energy efficiency measures, this goal corresponds to 1718 ktoe energy from renewable sources.

The intermediate national targets are set for 2-year periods as follows:

1. From 2011 till 2012 including: 10.72 %;
2. From 2013 till 2014 including: 11.38 %;
3. From 2015 till 2016 including: 12.37 %;
4. From 2017 till 2018 including: 13.69 %.

According to data of the National Statistical Institute (NSI) the construction industry engages about 7% of the employed persons and in this way construction stands out as the biggest industrial employer in the country. For the first nine months of 2011 the average number of persons on payroll employed on the basis of labour contracts was 131 000 people, which represents a reduction by 11.5% as compared to the same period in 2010.
According to the Bulgarian Construction Chamber the number of the unemployed in the building sector is above 100,000 people. According to the NSI the number of the unemployed for the first half of the year is 59 thousand. Unemployment in the building sector bears the marks and seasonal nature typical for the sector.

The number of employed workers possessing second level of professional qualification in construction in 2010 was 63,886, including 42,840 craftsmen and 21,046 installers, whereas the total number of those employed in the building sector for the same year was 156,327.

In compliance with the expectations on the workforce dynamics, to date no clearly manifested shortage of workers in the traditional professional activities has been noted (concrete-worker, reinforcement worker, mason, carpenter, plumber, electrician, roofer, installer of window frames, thermal insulation installer, waterproofing installer, shuttering-worker, etc). In perspective towards 2020 dropping off of a certain portion of the workers is presumed, leading to the assumption for pending need of training of 20% new workers, preferentially young people from socially vulnerable strata of the population. However, due to the stable penetration of low-energy solutions in the mainstream construction practice, it is supposed that nearly all workers would be engaged (although at different levels) in continuing vocational training activities dedicated to main energy efficiency principles, either on-site or through specialized training programs (specific targets available below).

On the other side, supply of specialists for installation and maintenance of main RE systems in buildings and the level of qualification of the workforce is quite limited. There is a clearly manifested shortage of installers in each of the studied systems (small biomass-fired boilers, photovoltaic and solar thermal systems, geothermal systems and heat pumps, mini wind turbines). New specialized training schemes should be developed and introduced in the training system, with growth rate similar or even exceeding the expected rate of introduction of the specified systems.

It is also worth noticing that the general approach to the practical trainings in the system of secondary vocational training and education is much different compared to the traditions and practices in most other EU member-states. One of the key recommendations is to foster practical trainings during this stage of education, both through enhanced cooperation with producers and suppliers of materials and technologies and through inclusion of intensive practical trainings on actual construction sites in the training programmes.

With respect to the teachers/trainers it can be stated that in a few years there will be acute shortage of well trained trainers in civil engineering professions and practical classes. The reasons are that the teaching profession is unattractive for young graduates and that a significant number of the present teachers will retire in the next years. The number of teacher trainings until 2020 period should be at least 1000 trainers educated in practice and theory for all classic construction works, energy efficiency, and installers. Training of trainers has to be realized before that with the support of all stakeholders and with respect to already achieved results in the advanced countries in the area of energy savings and RES, using all opportunities for intensive knowledge and experience transfer.

Further on, in line with the declared policies of the Ministry of Education, Youth and Science and the Ministry of Labour and Social Policy, it is recommended that a specialized institution for monitoring of the training needs is established, in cooperation with market actors, social partners and responsible state institutions.
1. Introduction

Climate changes are already taking place and represent one of the biggest environmental, social and economic threats facing the planet. EU works actively for reaching a global agreement for mitigation of climate change and conducts its own active policy in this respect. The human activities, which contribute to climate change, are mainly fossil fuel combustion, agriculture and deforestation. As a consequence of these there is a marked increase of the level of emissions of carbon dioxide and GHG emissions in general. In order to reduce the impacts of climate change it is necessary to achieve drastic reduction of GHG emissions. The EU has been for a long time now playing a leading role in international efforts for mitigation of climate change, as well as in the working out of the two major agreements in that field, namely the UN Framework Convention on Climate Change (UNFCCC)/1992 and the Kyoto Protocol/1997.

Since 1990 the EU has been undertaking serious steps as regards its own emissions. In the year 2000 the European Commission launched a European Climate Change Programme (ECCP). The European Climate Change Programme led to approval of a broad range of policies and measures. They comprise also the newly created EU Emissions Trading System, which is a major component of the EU Member States' efforts for emissions reduction at the most favourable possible costs, and the legislation concerning the fluorine containing greenhouse gases.

On January 23, 2008 the European Commission launched an exclusively ambitious package, whose major objective was to reduce the level of CO₂ emissions by 20% till 2020 as compared to the 2005/1991 levels. This plan will support the transformation of Europe into a low-carbon economy and will increase its energy security. The 20-20-20 plan envisages achievement of the following results:

- Reduction of CO₂ emissions by 20% till 2020;
- Increase of the share of energy from RES by 20% till 2020;
- Improved energy efficiency by 20% till 2020.

The building sector is of strategic importance for the European Union, since it provides buildings and infrastructure to the benefit of society. According to data of the National Statistical Institute (NSI) it has an important place in the economy of Bulgaria. It has been generating nearly 9% of the national GDP in recent years and ensuring employment for 7% of all the employed persons and in this way the construction sector is turning into the biggest industrial employer in the country. In 2010 in Bulgaria the sector comprised according to NSI data 22 078 enterprises, which in terms of categories of employment according to the Law on Small and Medium-size Enterprises may be distributed as follows: 18 508 micro, 2 890 small, 621 medium-size and 59 big companies. The trend of increase of the share of construction in the national economy remains till 2009 at levels above 9% and in 2010 marked a drop to 7.5%.

Energy efficiency is referred to in a number of directives, laws, ordinances, strategies, programmes and projects. A multitude of projects have been implemented under different national and European programmes. However, despite the level of implemented measures in the existing building stock in Bulgaria its energy efficiency level lags behind the objectives of the 2020 Strategy.
2. Objectives and methodology

The study “Current Status, Practices and Trends in the Building Sector in Bulgaria” is part of the activities under the project “Roadmap for Training and Qualification for Intelligent Energy Efficient Solutions in Buildings In Bulgaria till 2020” (BUILD UP Skills Bulgaria), prepared by a consortium comprising EnEffect Consult SP Ltd. (Coordinator), the National Agency for Vocational Education and Training (NAVET) and the Bulgarian Construction Chamber.

This report has been prepared on the basis of statistical data and forecasts for the future development of the building sector and more specifically as related to energy efficiency and qualification of building workforce. The emphasis is put on secondary education in the vocational high schools and on the licensed by NAVET centres for vocational training of adults. It has been compiled in compliance with the requirements of the report of the EU Executive Agency on Competitiveness and Innovations. The presented information originates from sources running national level databases: the Ministry of Finance, the Ministry of Regional Development and Public Works, the Ministry of Economy, Energy and Tourism, the Ministry of Education, Youth and Science, the National Statistical Institute, Eurostat, the European Federation of the Construction Industry with headquarters in Brussels, NAVET, analyses and databases of the “Analyses and Forecasts” Unit, data from the Bulgarian National Bank, the Public Procurement Agency, the “Eurofund” Agency, the Employment Agency, excerpts from publications of the European Economic Commission, information from the “Professional Qualification” unit of the Bulgarian Construction Chamber, and a paper of the “Risk Analysis” Foundation developed under the PHARE Programme.

The study was planned on the basis of established research methodologies in compliance with the methodological requirements for reliability of the collected empirical information.

The analyses and conclusions made can be used as a basis for undertaking specific management activities for upgrading of the quality of vocational training in the field of construction, for improvement of the dialogue between business entities (the construction companies) and educational institutions (vocational high schools and vocational training centres) in the search for effective paths for improvement of the qualification of the building workforce and maintaining of a permanent high level of skills and capacity to adapt of those employed in the building sector.

The major objective of the study is to analyze the demand and supply in the building sector in quantitative and qualitative terms and to identify the shortage of specific skills by professions, as well as the respective main barriers, related to the application of intelligent energy efficient solutions and the integration of renewable energy in buildings. The possibilities for improvement of the professional skills of the building workforce are analyzed, covering opportunities for enforced cooperation between the construction companies, the vocational high schools and vocational training centres. The outcomes will serve for elaboration of strategic policy documents in the field of the building sector and vocational education.
Phases of the research process

Phase 1. Analysis of documents and secondary analysis of existing sociological data
The purpose of Phase 1 of the study is to outline the current situation in the building sector from the point of view of the applied solutions in the field of energy efficiency and the use of RES and in connection with the practices and trends in the field of professional qualification of the workforce while laying the emphasis on the:
- characteristics of the building sector;
- national policies and strategies, related to the EU 2020 targets for energy consumption in buildings;
- review of the available statistical data related to the construction sector;
- current supply of vocational education and training.
On the basis of the achieved results, working hypotheses were developed, related to the identified gaps in the qualification levels between the current situation and the 2020 requirements and to the barriers affecting the qualification of the building workforce. The hypotheses were checked in the course of the next phases of the study.
The collected information is analyzed and presented to the Steering Committee and the participants in the Platform. Whenever necessary, expert assessment by an independent body was ensured.

Phase 2. Conducting of an empirical sociological study in independent modules
After the elaboration of the hypotheses in the course of the previous phase and definition of the target groups subject to investigation, adequate methodological approaches for collection of the necessary empirical information were selected. For ensuring of the reliability of information in compliance with the objectives and tasks of the study a dedicated survey was conducted among the construction companies-members of the Bulgarian Construction Chamber.

Phase 3. Conducting of a qualitative sociological study through structured in-depth interviews
Templates for structured in-depth interviews with key representatives of the defined target groups were developed on the basis of the conclusions from the preceding two phases. They were meant to serve for enhancing more profound analyses of the crucial problem areas and bridging of identified information gaps. The structuring of the interviews allowed for comparisons of the obtained data and helped identification of certain trends, which are described in the final version of the study.
The collected information is analyzed and presented in the form of an analytical report to the Steering Committee and the participants in the Platform.
3. Characterisation of the building sector

The building sector is one of the sectors worst hit by the economic crisis in the recent three years. According to data from the national statistics the drop in the construction output alone during 2011 was some 2/3 as compared to the preceding year. Foreign investments in construction account to about 8-11% of the total investments in the country. However, all investments, irrespective whether directly in construction or in other sectors, are in one way or another related to construction, since in practical terms the investments are connected with construction of some kind of capacities, building stock, infrastructure etc. For that reason it is particularly important at that moment of financial restrictions that the state should create favourable prerequisites for re-winning foreign investments back to this country. The great hope of the building guild for revival of the branch is enticed by the numerous tender procedures for projects to be financed by European funds, since that would help ensure work for the construction companies and their employees. At the same time, not so long ago were published the results from the regular survey, conducted by the National Statistical Institute among the managers of enterprises in the fields of construction, services and industry, which serve to “measure” the business climate in the country. It turned out that the majority of the respondents anticipate new drops for their businesses and personnel lay-offs during the 2012.

![Fig.1 Results from the regular survey conducted by the NSI to measure the business climate in the building sector (%). Source: NSI](image)

According to data from the National Statistical Institute, the Ministry of Finance and the Employment Agency in 2010 the Bulgarian economy had marked GDP growth by 0.2% and has reached a volume of about BGN 70 511 million. The industrial sector had generated approximately 1/3 of the Value Added of the economy, which was by 0.5% more than the figure for the preceding year, and in the construction sector the 2010 turnover was at levels, which were similar to those recorded during 2007, as indicated by NSI data.
Also according to data of the National Statistical Institute the construction industry engages about 7% of the employed persons and in this way construction stands out as the biggest industrial employer in the country.

The growth rates of the generated Value Added in the building sector as compared to the Gross Value Added (GVA) for the entire economy are as follows: marked growth for the entire period 2000-2009, whereas during the initial years 2000-2004 the growth levels demonstrate trends of fluctuation in the range of 5%. The growth trend remains steady until 2009 at levels above 9% to strike a drop to 7.5% in 2010. The share of the turned out construction output as related to the output of the industrial enterprises demonstrates a trend of smooth, almost double increase from the year 2000 to the peak year 2008. For the two past years since the beginning of the crisis there has been a significant decrease of the volume of production output by 38.3% - from 9.3% GVA in 2008 to 7.5% GVA in 2010.
The informal sector in construction

According to data from the Ministry of Finance of last year the share of the shadow economy after the year 2000 amounts to about 20% of the GDP. In 2010 the National Statistical Institute made officially public for a first time data about the share of the non-formal economy from 2000 till 2008. According to the national statistics the shadow economy accounted in 2001 and 2002 for 14.7% of the GDP and in 2003, 2004, 2005 and 2006 for respectively 14%, 12.7%, 12.4% and 11.4%. The NSI experts evaluate to 10.4% the GDP share of the non-formal economy in 2007 and 2008. The NSI would like to draw attention to the fact that these figures have been determined on the basis of expert opinions and represent an approximation only.

Fig. 5. Data about the non-formal economy during the period 2000-2010. Source: NSI

According to data from the yearly “Study of the Hidden Economy in Business” of the Centre for Research of Democracy, published in 2010, the Bulgarian businesses indicate the construction branch as the sector with the biggest share in the shadow economy, whereas almost every third respondent had declared to share that opinion.
The Association of Industrial Capital in Bulgaria (AICB) also conducts studies in that domain using as a primary method sociological surveys, based on the opinions and estimates of employees and employers concerning the share of the non-formal economy in the country, which is quite a subjective estimate and represents rather people’s assumptions than an actual measuring of the scale of that phenomenon. The AICB study also points to the building sector as one of the three “the most affected by that evil” branches of the economy, along with tourism and health care.

According to the Bulgarian Construction Chamber the relative share of construction companies, which operate in the non-formal sector, had reached the levels of 15-20% within a period of 10 years. On this issue the Chamber and its branches in the country pursue a policy of zero tolerance toward this negative phenomenon and stand up firmly for application of the requirements for prevention, control and compliance with the measures for combating unregulated labour.

The founding of the Construction Chamber by law is one of the major regulation acts related to the building sector.

4. National policies and strategies to contribute to the EU 2020 energy targets in buildings

4.1. National policies and strategies in the field of energy

The Energy Strategy of the Republic of Bulgaria until 2020 is a fundamental act of the national energy policy, which is approved by the Council of Ministers and is passed by the National Assembly of the Republic of Bulgaria.

The present national energy strategy reflects the political vision of the Government concerning the European development of Bulgaria in alignment with the current European framework of the energy policy and the global trends in the development of the energy technologies.

The energy strategy is oriented towards overcoming of the main challenges for the Bulgarian energy sector at the present moment, namely:

1) The high energy intensity of GDP. Despite the positive trend of improvement, the energy intensity of the national GDP is by 89% higher than the EU average (with due account taken of the purchasing capacity parity).

2) The high dependence on import of energy resources: Bulgaria provides 70% of its gross consumption through import. The dependence on imported natural gas, crude oil and nuclear fuel is practically overall and there is a traditionally one-sided orientation to the Russian Federation.

3) The need of environmentally-friendly development.

The major priorities of the Energy Strategy of the Republic of Bulgaria in the context of the European energy policy have been reflected in five directions:

- To guarantee the security of energy supply;
- To achieve the targets for renewable energy;
- To improve energy efficiency;
To develop of a competitive energy market and policy aimed at meeting the energy needs;

To protect consumers’ interests.

On the basis of the above mentioned priorities is formulated also the vision of the Government for development of the energy sector during the coming years, oriented as follow:

- To maintain a secure, stable and reliable energy system;
- The energy sector remains a leading branch of the Bulgarian economy with a clear cut export orientation;
- Emphasis on clear and low-emission energy – nuclear and from RES;
- Balance in terms of quantity, quality and prices of electricity produced from RES, nuclear energy, coal and natural gas;
- Transparent, effective and highly professional management of energy companies.

Policies and objectives related to the priorities of the Energy Strategy

To guarantee the security of energy supply

Major directions
- Reduction of the dependence on imported energy resources, especially of such with unstable and uncontrollable prices;
- Diversification of suppliers and sources;
- Diversification of routes.

To reduce GHG emissions

Major directions
- Reduced energy consumption, i.e. improvement of energy efficiency at energy generation and energy end-use;
- Use of cleaner energy, i.e. improvement of the energy mix through increase of the share of low-emission energy;
- Rapid technology advance, i.e. introduction of innovative (clean coal) energy technologies;

The common European objective for reduction of GHG emissions by 20% till 2020 as compared to the baseline 1990 will be realized through:
- Reduction by 10% as compared to 2005 of emissions from installations, which are excluded from the European GHG Emissions Trading Scheme (buildings, light industry, transport, agriculture and solid waste);
- Reduction by 21% as compared to 2005 of emissions from installations participating in the Emissions Trading Scheme (all the large industrial and energy sources of emissions, as well as the aviation sector).

To increase the share of RES in the total energy end-use

Major directions
The support policies have been introduced by the new Law on Renewable Energy. They are predominantly related to overcoming of the existing barriers.

The national mandatory target, which Bulgaria should achieve, is that in 2020 16% of the total energy end-use in the country should be renewable energy, noting that the country has been assigned the lowest additional increase (6.6%) as compared to the other Member States.

The national target should be achieved through increase of electricity production from renewables, increase of renewable energy end-use for space heating and cooling and renewable energy consumption by transport. From the target by sectors only that of renewable energy consumption in the transport sector is mandatory – 10% share of energy from renewables in energy consumption by transport by 2020.

To improve energy efficiency

Major directions

- Introduction of regulatory and market incentives for implementation of energy efficiency measures for both the energy companies and the end-users;
- Creation of conditions for access to the gas distribution network for 30% of the households in the country;
- Decentralized, including in households, energy production from RES. Decentralized generation results in complex benefits, since it helps avoid energy losses in transmission, avoid the costs for construction of transmission networks and uses a clean and infinite resource;
- Improvement of the energy performance of buildings – private and public, comprising also an accelerated, as regards the European norms, introduction of the requirements for buildings with nearly zero net energy consumption in the public sector;
- Support for combined heat and power generation (cogeneration);
- Elaboration of an Energy Efficiency Strategy by the Council of Ministers;
- Enhancement of the role of the Sustainable Energy Development Agency (SEDA);
- Ensuring a growing flow of funding from the EU Operational Programmes, the Kozloduy International Fund, as well as from the sale of the national surplus of assigned emissions units (ASUs) for greenhouse gases.
- Energy-related criteria (with respect to efficiency, the use of RES and intelligent networks) will be strictly observed in the process of assignment of all public procurement orders for construction, services or products.

Bulgaria aims at reducing by 50% the energy intensity of the GDP by 2020 by achieving for that indicator a value of 456 toe/M€05 as compared to its 2005 value (913.3 toe/M€05). The implementation of the measures and policies with respect to improvement of energy efficiency, whose approval with the Energy Strategy of Bulgaria 2020 is pending, is intended to lead to improvement of energy efficiency by approximately 25% or saving of more than 5 million toe of primary energy as compared to the baseline development scenario by 2020.
Independent, regulated and competitive energy market

Major directions:

- Ensuring adequate supply and a larger number of suppliers;
- Free and indiscriminate access to the grid for every market actor;
- Separation of the transmission operators from the generation and supply activities;
- Announcement of the available capacity of the grid and its equitable distribution among all the users;
- Meeting the requirements of the Common European Policy concerning creation of a unified market and its expansion in Pan-European energy community.

The concrete targets, the measures for their attainment and the stakeholders in this process are the subject of the National Energy Efficiency Action Plan. The second 3-year Energy Efficiency Action Plan formulates an intermediate target for the period 2011-2013, namely fuel and energy savings by 2013 to the amount of the averaged value of final energy consumption within the scope of the Directive for the period 2001-2005. This target amounts to 4860 GWh (418 ktoe) annual savings of fuels and energy.

The above mentioned targets are related to final energy consumption. The European policy pays an ever growing attention to primary energy consumption, since it reflects the efficiency of use of the energy sources in the entire process from their extraction through their conversion into energy, transportation and end use of that energy.

The target for primary energy saving is laid down in the Energy Strategy of Bulgaria till 2020, promulgated in the State Gazette, Vol. 43/07 June 2011. The target proposed in that document is reduction of primary energy sources by 50% by 2020 as compared to the figures for 2005. The implementation of that target is expected to lead to saving of 5.8 Mtoe primary energy as compared to the baseline development scenario by 2020. The result achieved so far is reduction of primary energy sources from 0.563 ktoe/BG00 in 2005 to 0.429 ktoe/BG00 in 2009 or by more than 23%.

The national target for end-use under Directive 2006/32/EU was quoted in the Draft National Energy Efficiency Action Plan. This target is saving of 7291 GWh (627 ktoe) energy from final energy consumption (in the framework of the Directive) till 2016 and the intermediate target is saving of 2430 GWh (209 ktoe) till 2010.

The achieved energy savings by 2009, alone in the framework of the Energy Management Directive, calculated using the top-bottom method, are not less than 5168 GWh/year (444.3 ktoe), which considerably exceeds the intermediate target of 2430 GWh (209 ktoe) for the first intermediate period (2008-2010).

The forecast for the final energy consumption and the indicators for comparison based on the baseline and the target scenarios is illustrated in the table below.
Table 2. Forecast about the final energy consumption and indicators for comparison under the baseline and the target scenarios. Source: Energy Strategy of Bulgaria till 2020

After processing of the information submitted to the SEDA an assessment of the achieved and expected savings of fuels and energy in the framework of Directive 2006/32/EU was also performed using the top-bottom method. The forecast for primary energy consumption and the indicators for comparison under the baseline and target scenarios is shown in the table below.
Summary of the planned activities with respect to the implementation of the Energy Performance of Buildings Directive recast and the RES Directive

It is expected that Bulgaria will receive in the framework of the current year the methodology for calculation of cost-optimal nearly-zero energy buildings. Its use will help calculate the respective performance for different types of standard buildings, which will be laid down in the Law on Structure of the Territory and in the new Law for Amendment and Supplementing of the Energy Efficiency Act, as well as the rest of the requirements of the Directive. The requirements and preconditions concerning the construction of nearly zero buildings will also be reflected. Their real application will start at the end of 2013. The National Energy Efficiency Action Plan also envisages development of a strategy for increase of the buildings with nearly zero-energy consumption.

In compliance with the requirements of Directive 2010/31/EU Bulgaria will try to support the construction of new buildings with nearly zero energy consumption, as well as the achievement of the same energy performance levels in the event of rehabilitation of existing buildings. The regulatory documents will be analyzed and revised with a view to introduction of harmonized European requirements concerning the energy performance of buildings with nearly zero net energy consumption. It is envisaged to establish specific digital reference values for the indicators for annual energy consumption as national parameters, which will serve to formulate a regulatory requirement concerning the energy performance of these types of buildings.

On this basis a National Plan for increasing the number of buildings with nearly zero energy consumption will be developed. The plan will comprise an analysis of the status quo in the building sector (growth rate of the construction process, business environment, financial and administrative barriers, socio-economic conditions, market principles, etc.), establishment of the baseline year for reporting of the laid down targets and formulation of the national targets for buildings with nearly zero energy consumption.

Incorporation of specific texts concerning the Directive in the new amendments to the Energy Efficiency Act is envisaged.

National target for buildings with near zero energy consumption

When defining the national target for buildings with nearly zero net energy consumption the Republic of Bulgaria will stick to the “2-phase” approach, proposed by the European Commission with respect to target setting. In this ambitious undertaking the country envisages to pay particular attention on the adequacy of the measures for attainment of the national target, however not only because of the fact that these measures will be duly evaluated by the Commission in connection with the
targets of Directive 2010/31/EU and the general targets of the “Europe 2020” Strategy, but also because the country still possesses a significant potential for energy conservation.

Meanwhile the Bulgarian regulatory framework on energy efficiency has been many a time highly evaluated by the European Union.

Phase One

During Phase One, which will almost entirely coincide with the period of validity of the Second National Energy Efficiency Action Plan 2011-2013, the Republic of Bulgaria formulates as its basic objective setting up of the national parameters for buildings with near zero energy consumption.

Phase One is preparatory phase and comprises two intermediate preparation periods.

The first preparatory period started in 2010 and comprised the years 2010-2011. During that time the following measures had to be planned and implemented:

Measure 1. Package review of the existing legal framework through application of an analytical approach in the evaluation of all measures with positive legal substance, which form the good national practice for improvement of energy efficiency in buildings and might serve as a basis for successful introduction of the harmonized European requirements concerning the energy performance of buildings with near zero net energy consumption.

Measure 2. Formulation, assignment and implementation of research tasks for determination of the national parameters (digital reference values of the indicators for annual energy consumption) for setting up a regulatory requirement concerning the energy performance of buildings with nearly zero net energy consumption.

Measure 3. Preparation of projects, approval and promulgation of laws, by-laws and administrative ordinances, necessary for the full harmonization with the requirements of Directive 2010/31/EU, including setting up of the national parameters for energy performance of building with nearly zero net energy consumption.

Phase Two

The second phase is based on measures binding it to Phase One and covers the period 2012-2013. On the basis of the overall preparatory work during Phase One and the persistent implementation of the tasks laid down in it, it will be possible to define during Phase Two (with certain approximation) an intermediate target for improvement of the energy performance of certain categories of buildings till 2015 to levels corresponding to near zero energy consumption and meeting the parameters set up in digitally expressed indicators (kWh/m²) for Bulgaria in the course of Phase One.

At the most optimistic forecast for implementation of the targets laid down during the preparatory phase, the national intermediate target till 2015 might be identified to be approximately between 1% and 1.5% of the total floor area of new buildings, occupied by bodies of the national government and local self-governments during the selected baseline year. The baseline year might be determined more precisely at the beginning of Phase Two. After evaluation of the impact of the plan, the national target, including the intermediate target, may be corrected, if necessary.
The approximately defined target for 2015 is based on the analysis of energy consumption for reconstruction of buildings in EU-27, presented in Official Notice dated 8 March 2011 concerning the Energy Efficiency Plan 2011, as well as on the emphasis on the leading role of public bodies to serve as models for the best energy performance of their buildings.

As regards the setting up of targets during Phase Two the following measures are envisaged:

Measure 4. Working out of a Draft National Plan for increase of the number of buildings with near zero net energy consumption.

Measure 5. Implementation of pilot projects for new buildings from the public sector with nearly zero net energy consumption during the period 2011-2013 and reporting of their contribution to the implementation of the intermediate target till 2015.

The use of RES

According to the National Action Plan on RES the forecast RES potential of Bulgaria is about 4500 ktoe. Biomass (36%) and hydro energy (31%) account for the biggest shares in it. The mandatory target of Bulgaria is 16% renewable energy in the final energy consumption.

With respect to the building sector the measures comprise mainly incentives for the use of renewable energy. At the local level the Mayors are required to work out long-term and short-term programmes related to RES. In these plans in addition to the provisions concerning energy generation from renewables on the territory of the municipality contain also a requirements to implement measures involving the use of RES and energy efficiency measures in the event of implementation of projects for rehabilitation, refurbishment, overhaul or reconstruction of buildings municipal or mixed (municipal and governmental) property.

For the introduction of Directive 2010/31 the National Energy Efficiency Action Plan envisages legislatively provided requirements for introduction of RES in the event of construction of new buildings or rehabilitation, refurbishment, overhaul or reconstruction of existing buildings. In these cases the Law on RES requires commissioning of installations for energy production from RES when that is technologically possible and economically feasible. It is envisaged that at least 15% of the total heat and cooling energy demand of the building should be met from renewable energy through introduction of centralized space heating running on biomass or geothermal energy, individual biomass-fired systems, solar heat systems, heat pumps and surface geothermal systems.

In addition, a mandatory analysis of the possibilities for use of energy from RES is envisaged also in preparation of investment projects for new buildings or rehabilitation, refurbishment, overhaul or reconstruction of existing buildings. This possibility should be taken into consideration also in the course of energy efficiency audits of existing building.

Contribution of the construction sector to achieve the 2020 targets

The construction sector is not observed as a separate sector in the national statistics of Bulgaria. It deals, as also indicated by Directive 2006/32, with the sectors industry, transport, households, services and agriculture. The impact of the energy consumption of buildings is mainly in households and services sectors. In several countries, national action plans for energy savings in the building sector have been
developed, as the methodology proposed there is based on average data for the share of the buildings in the five sectors. Due to the negligible number of buildings in the transport, industry and agriculture sectors, the national target is formed by households and services sectors. It is assumed that the final energy consumption in households amounts to 100% in total for the sector “Buildings” and in the final consumption in the “Services” sector the consumption of buildings is in the range of 70%-90%. For calculation purposes we assume a share of 80% and that all the sectors participate proportionally in the achievement of the 9% target.

Under these assumptions and bearing in mind the above mentioned objectives of the National Action Plan on Energy Efficiency, the national target for the building sector is 2938.8 GWh (252,854 ktoe). Taking into account the anticipated savings, presented in the Second National Action Plan on Energy Efficiency by sectors, the implementation for the building sector would be 2806.2 GWh (241,445 ktoe). The reason for this is the lower implementation in the household sector as compared to the figures laid down as a target for the sector. Due to the high energy intensity of the economy, it is believed that these targets will be achieved; however, strict control on the application of existing and future legislative measures is deemed to be crucial for the execution of the national goals.

4.2. National policies and strategies in the field of lifelong VET

National policy and strategy related to the “green” skills and jobs

“Green jobs” are jobs set up in economic activities connected with the manufacture of goods and provision of services supporting environmental protection according to a list of such economic activities endorsed by the Minister of Environment and Waters and the Minister of Labour and Social Policy. The definition of “green job” is given in the Additional Provisions of the Law on Promotion of Employment, Paragraph 1, Item 35 (new – SG, Vol. 59/2010): For the implementation of the commitment made under the “Bulgarian path” for achievement of better flexibility and security on the labour market 2009-2011 to “promote creation of employment in the so-called “green” jobs” and more specifically “to define the sectors, branches and activities possessing potential for development of the so-called “green jobs” amendments have been made at the end of July 2010 in the Law on Promotion of Employment by virtue of a new Article 55e (State Gazette, Vol. 59/31 July 2010) and a measure for promotion of employment in the so-called “green jobs” was introduced. According to the measure it is envisaged that for every newly opened “green job”, on which an unemployed person possessing an intermittent registration as unemployed for not less than 6 months, nominated by the Employment Agency, the employer shall be granted monetary refund for the period the said person has been employed, however for a period not longer than 6 months.

For implementation of that measure a total of BGN 3,024,000 for subsidizing 2,100 jobs were envisaged in the National Action Plan on Employment for 2011. According to data from the Employment Agency in the period January-September 2011 49 employers joined the promotional measure. Three of them were from sector F – “Construction”. Applications for 795 “green jobs” have been submitted. Of his total 284 were females, 74 were young people and 221 were persons above 50 years of age.

The National Action Plan on Employment for 2012 envisages BGN 1,226,956 for providing employment for 722 unemployed persons, including 400 for new
employment. The condition for employers’ obtaining subsidy for providing employment above the average number of employees on payroll for the last 6 months is changed. The employer is required not to have discharged during the last three months workers and officials employed on the same jobs for which he/she has employed unemployed persons as subsidized employment. For the persons employed on “green jobs” (Article 55e of the Law on Promotion of Employment) the social insurance costs will be covered as well. This provision will facilitate employers and minimize their costs for the employed unemployed.

From the above presented data it is evident that there is no marked activeness among employers to take advantage of the proposed measure – we may only guess what is the reason for that: either the measure is not attractive or employers are not informed about its existence, or employers do not connect the jobs in their enterprises with the definition “green jobs”, or the list of positions and economic activities it too narrow.

National and regional implementation of the European framework on qualifications and other EU policies related to education and training in the building sector

The qualification, object of this analysis, comprises the professional fields ‘Construction’, ‘Electrical engineering’ and ‘Energy sector’, ‘Machine tools engineering’, ‘Metal processing’ and ‘Metallurgy’ (the fields are in compliance in terms of title and code with the International Standard Classification of Education ISCED 1997). Education and certification on these professions is realized in compliance with the Law on Vocational Education and Training (VET). The list of professions (professional qualification levels) is enclosed in a separate table.

Place of qualifications in construction in the National Qualification Framework

The National Qualification Framework (NQF) was worked out in implementation of Recommendation 2008/C 111/01/EU of the European Parliament and the EU Council concerning approval of a European Qualification Framework for Lifelong Education”. The NQF has been worked out by an inter-institutional working group (composed of representatives of the social partners). The NQF has been adopted by the Council of Ministers of the Republic of Bulgaria with Decision № 96 of 02.02.2012.

The National Qualification Framework will create prerequisites for transition among the educational subsystems, will facilitate the validation of non-formal and independently acquired competencies, will motivate the citizens to participate more actively in different forms of lifelong learning and will contribute for comparison and recognition of qualifications acquired in the different European countries.

On the basis of an analysis of the learning process (knowledge, skills, competences), the degree of self-control and responsibility in the practicing of a given profession, the bend of mind with respect to upgrading of one’s competence, the social and communicative skills, have been defined the qualification levels acquired in Bulgaria as compared to the definitions stated in the Recommendation concerning the European Qualification Framework.

The Bulgarian National Qualification Framework, as well as the European one, comprises 8 levels (including an additional Zero level). The levels in the sphere of higher education (6 and 7) are divided into sublevels depending on the preliminary background and the admission to the respective educational system – it is possible that in the final draft of the Bulgarian NQF there will be no sublevels, since the
preliminary training should not be taken into consideration as a criterion in the elaboration of the NQF (according to the recommendation).

The levels of qualifications acquired in the framework of the system of VET as per the NQF shall be determined in compliance with the definitions for professional qualification level provided in the Law on VET – every profession, acquired under the conditions laid down in the Law on VET, is related to a specific qualification level – 1st, 2nd, 3rd or 4th, whereas Level 1 is the lowest (worker) and Level 4 (organizer, manager, logistics expert) is the highest.

The existence of qualifications in the building sector at all levels from 2 to 8 according to the NQF is a prerequisite for ensuring negotiability among the educational subsystems within the framework of the national system for acquiring qualification, but also for comparison of the qualifications acquired in Bulgaria, with those acquired in other countries.

The Law on Crafts

The crafts, incorporated in this law in the construction sector, are as follows: building of fireplaces and glazed tile-stoves; fabrication of components for and installation of eave sheathing; roofing works – roof tile arrangement; installation of drain pipes; chimney building. Although the education in these crafts is regulated by law (the Law on Crafts), it is not recognized as part of the system of formal education and training because of the absence of clear regulations and transparency with respect to the method of training, evaluation and certification of the acquired competences, as well as because of the absence of whatever elements of a system for guaranteeing the quality of the training proposed under this law. For these reasons the qualifications acquired under the Law on Crafts do not from an object of the National Qualification Framework (a procedure is envisaged, according to which for every qualification, acquired outside the system of formal education, a specific level under the NQF may be assigned, provided the training and certification comply with specific conditions).

On-site acquiring of competences

Construction is one of the sectors, in which many individuals without professional qualification get a job and acquire competences for performing masonry works, concrete works, sheathing, water supply and sewerage systems etc. on-site under supervision by more skilled craftsmen. This training is not part of the formal system of VET. With a view to the large number of such individuals it is necessary to introduce a system for validation of the non-formally acquired competences.

Introduction of system of credits in the VET and a mechanism for validation of competences acquired in a non-formal way in the building sector

The introduction of a system of credits aims at recognition and accumulation of knowledge and skills irrespective of the manner, in which they have been acquired, and assignment of credits. The introduction of the system of credits may be realized only provided there are well established standards in the country. The professions in the building sector are best described in the State Educational Requirements by Professions – for all professions there are state educational requirements (with the exception of the professions “furnace builder” and “stoker”). The State Educational Requirements contain a detailed description of the results from the learning process – knowledge, skills and competences as a basic precondition for comparison of qualifications acquired in different countries, as well as a condition for introduction of a system of recognition, validation and assignment of credits irrespective of the
manner of acquiring of the professional competences. Description of the learning results in “Scores” is not introduced as yet, although it would facilitate the training institutions in the development of curricula oriented towards acquiring of skills for resolution of concrete work tasks and would also facilitate the certification of competences acquired outside the training institutions.

Ensuring the quality of VET in the building sector

In the system of VET in Bulgaria there is no unified system for ensuring the quality, so it would not be correct to make conclusions about the quality of training in the building sector. The training institutions make independent efforts, with support from their partners (businesses, municipal and state institutions) and with funding from the State Budget and the European Social Fund (through the Operational Programme “Human Resources Development”) to create conditions for good-quality training with respect to the process of management of the centre, maintaining of partnerships, due consideration of the requirements of the business and provision of material stock for conducting of training.

The evaluation of the quality is performed in two ways – for the centres for vocational training of adults through the licensing procedure and follow-up control by the NAVET and for the schools – through the system for evaluation of quality (through the regional inspectorates on education and the Ministry of Education, Youth and Science).

Application of the EUROPAS Initiative

Officially the Europas documents are recognized in Bulgaria, but it appears that they are used and required in the event of application mainly by governmental and municipal institutions.

Europas CV and *Europas Language Passport* are not popular among employers in the building sector (but their preparation is incorporated in the training programme of vocational high schools in construction). *Europas Annex to the Certificate* is neither used nor issued by the training institutions and is not recognized by the employers. *Europas Annex to the Diploma* – according to the Law on Higher Education the higher educational establishments are entitled to issue it but they do not do it (except for graduates, who have submitted an application that they explicitly require the issue of such document). *Europas mobility* is issued only by the vocational high schools implementing projects in the field of mobility in the framework of the “Leonardo da Vinci” Programme with the “Lifelong Education” Programme.

European framework for key competences

According to the State Educational Requirements in order for a person to acquire qualification for professions from the range of vocational education and training he/she should master also part of the key competences – a foreign language specific to the profession, digital competence (most often a specialized software), communication skills, leadership skills, entrepreneurship, competences in the domain of the natural sciences, civil competences (including protection of the environment). Correctly worked out training plans and curricula ensure mastering of part of these competences (foreign languages, computer skills, mathematics), but unfortunately the rest of the competences, the training in which requires the use of specific training methods and specifically trained trainers, cannot be reported as successful.
5. Statistics on building and energy sectors

5.1. Statistics on the building sector

Building stock, namely type of buildings (residential, commercial, industrial, public), annual rate of new construction and renovation

Building construction comprises construction of covered construction sites, which may be used independently for the purposes of long-term use and depending on their designation they are divided into:

- Residential buildings - buildings, in which at least one half of the total floor area is designated for residential purposes: single-family houses, apartment blocks and cooperative building and condominiums/hostels, boarding houses;

- Non-residential buildings - buildings designated for different activities: administrative, manufacturing, commercial, transport, health care, education, culture, agriculture, facilities for recreation and short-term stay – hotels, motels, holiday homes, chalets etc.

- The construction of facilities /civil construction/ comprises new construction and upgrading of engineering facilities related to the construction of:
 - Transport infrastructure – road network, railroads, airplane runways, bridges, tunnels and hydro-engineering facilities;
 - Pipelines, power transmission lines and trunk-communication lines;
 - Miscellaneous – it comprises construction facilities of industrial designation, power plants, sports and recreation facilities.

Residential buildings by type of building structure as by

1 February 2011

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Large-panel reinforced steel</th>
<th>Skeleton reinforced steel</th>
<th>Solid brick</th>
<th>Other</th>
<th>Not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings</td>
<td>2060745</td>
<td>21641</td>
<td>48618</td>
<td>1727202</td>
<td>263267</td>
<td>17</td>
</tr>
<tr>
<td>Dwellings</td>
<td>3887149</td>
<td>710733</td>
<td>413179</td>
<td>2502946</td>
<td>256639</td>
<td>3652</td>
</tr>
<tr>
<td>Residents</td>
<td>7068963</td>
<td>1566442</td>
<td>712040</td>
<td>4473514</td>
<td>316967</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. Residential buildings by type of building structure as by 1 February 2012. Source: NSI
COMMISSIONED NEW BUILDINGS AND DWELLINGS

Period: 2004 – Sept. 2011 incl., number

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New residential buildings, number</td>
<td>1,500</td>
<td>1,843</td>
<td>2,074</td>
<td>2,697</td>
<td>2,926</td>
<td>2,975</td>
<td>2,350</td>
<td>2,033</td>
</tr>
<tr>
<td>New dwellings, number</td>
<td>8,267</td>
<td>12,059</td>
<td>13,270</td>
<td>18,864</td>
<td>20,924</td>
<td>22,058</td>
<td>15,771</td>
<td>10,402</td>
</tr>
<tr>
<td>Floor area of the new dwellings, m²*</td>
<td>728,947</td>
<td>994,110</td>
<td>1,087,661</td>
<td>1,521,047</td>
<td>1,635,299</td>
<td>1,612,332</td>
<td>1,189,736</td>
<td>805,346</td>
</tr>
</tbody>
</table>

Table 5. Commissioned new residential buildings and dwellings

As indicated by various sources, the vast majority of the housing building stock in Bulgaria has always been privately owned, but unfortunately the situation is not the same as regarding the land on which the multifamily apartment buildings are constructed, especially in the cities. The share of private residential buildings is estimated to have reached a figure close to 97%, with average dwelling size around 60 sq. m. A significant part of those buildings (about 68%) were constructed in the period 1944-1990, when energy prices were very low and priority was given to minimizing the initial investments leading to a low quality architecture and insulation.
Around 22% of the residential buildings were made with external walls from prefabricated elements which have the worst insulation effectiveness, compared to all other types of residential buildings.\(^1\) This is the main factor why specific energy consumption per m\(^2\) heated area is about twice higher than the average EU member-states level.

On another issue, for the second quarter of 2012, 16.8% of the family expenditure is on home maintenance - mainly on electricity and energy for heating - which supports statements for actual energy poverty status of the population. It is also a fact that these expenditures are not enough to provide normal level of comfort, especially during the winter when usually only one or two premises are heated. This situation leads to the very common case that, at these levels of expenditure on energy, affordable energy efficiency measures are suitable for reaching normal levels of comfort, but not for actual savings on energy bills. This factor, combined with the lack of experience of the financing institutions, made commercial financing of energy efficiency (and also RES) projects quite improbable. According to various sources, between 1996 and 2004, the energy efficiency of households improved by only 4% compared to the 1990 baseline. Unfortunately, no state commitment and no substantial subsidy for the refurbishment market was available during this period (and beyond).

According to recent calculations by experts of EnEffect Cosult based on the available statistics for the years 2009 and 2010, the new construction rates are generally higher in the non-residential than in the residential sector. In the residential sector the average new construction rate is about 0.9%. The average new construction rate in the non-residential sector is 2.8%, whereas restaurants and hotels have the highest new construction rate with 10%, followed by retail buildings with 6.9 and office buildings with 0.8%. Due to the demographic decline in Bulgaria (since 1985 the Bulgarian population has decreased by 1.5 million), very few new educational and health facilities are built.

3.1.2. Number of low energy buildings, annual rate of new construction of energy efficient buildings and energy efficient renovations

By 2011 some 50 multi-family residential buildings or 1 093 dwellings have been renovated through the national subsidized renovation programmes. The annual savings as a result of the renovation activities amount to 8 488 575 kWh (40-60 %) energy and 6 672 t reduced harmful CO2 emissions in the atmosphere.

It is impossible to provide reliable information about the number of low energy buildings, annual rate of new construction of energy efficient buildings and energy efficient renovations as such data is not an object of statistical observation at national or regional level. What may be affirmed is that buildings of new construction and complete renovations should possess an energy passport, in which the energy performance class of the building is stated. The new buildings/renovations are generally fitted with heat insulation and glass packages featuring higher energy efficiency. However, there is no available data about the actual energy consumption of those buildings.

This situation is unanimously recognized within the National Platform as the main stumbling block for quality monitoring and forecasting and it is our firm belief that immediate measures should be taken for closing this gap by better coordination of the activities of the National Statistical Institute, regional statistics centres, municipalities (which are collecting the majority of the raw data), the Direction for National Building Control and responsible ministries.

3.1.3. Companies (SMEs) operating in the building sector

Operating on the construction market are the following types of companies according to the definition in the Law on Small and Medium-size Enterprises: micro-companies with less than 9 employees (83.8%); small companies with 10-49 employees (13%); medium-size companies with 50-249 employees (2.8%). The large companies with more than 250 employees account for hardly 0.3%.

In the Central Professional Registry of Builders, kept by the Bulgarian Construction Chamber, companies covering approximately 92% of the volume of construction works and employing 85% of the total number of those employed in the sector are registered. The majority of those companies are small and medium-size enterprises.

<table>
<thead>
<tr>
<th>Sector/subsector under the Classification of Economic Activities (CEA) 2008</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTOR Construction – EU total</td>
<td></td>
</tr>
<tr>
<td>Companies ('000)</td>
<td>1 929</td>
<td>1 978</td>
<td>2 370</td>
<td>2 492</td>
<td>2 612</td>
<td>2 485</td>
<td>2 741</td>
<td>2 886</td>
<td>2 970</td>
<td>3 157</td>
<td>3 110</td>
</tr>
<tr>
<td>Employees ('000)</td>
<td>14 086</td>
<td>14 122</td>
<td>14 199</td>
<td>14 321</td>
<td>14 532</td>
<td>14 962</td>
<td>15 387</td>
<td>15 991</td>
<td>15 938</td>
<td>14 643</td>
<td>13 935</td>
</tr>
<tr>
<td>SECTOR Construction – Bulgaria total</td>
<td></td>
</tr>
<tr>
<td>Companies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 986</td>
<td>16 824</td>
<td>14 250</td>
<td>12 463</td>
<td>14 318</td>
<td>18 167</td>
<td>22 628</td>
<td>24 323</td>
<td>22 078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employees ('000)</td>
<td>134</td>
<td>133</td>
<td>134</td>
<td>137</td>
<td>147</td>
<td>171</td>
<td>214</td>
<td>251</td>
<td>297</td>
<td>271</td>
<td>221</td>
</tr>
</tbody>
</table>

Table 6. Number of enterprises and employees in the building sector. Source: Central Professional Registry of Builders with the Bulgarian Construction Chamber
5.2. Statistics of the current workforce in the building sector

The average monthly number of employees on payroll for the nine months of 2011 is 131,000 people, which represents a reduction by 11.5% as compared to the same period of 2010.

According to analyses of the Bulgarian Construction Chamber the number of the unemployed in the building sector is more than 100,000 people. According to the NSI the number of the unemployed for the first half of the year is 59 thousand. Unemployment in the building sector bears the marks and seasonal nature typical for the sector. The economic crisis has to a certain extent screened the positive and negative characteristics of the sector.

The distribution of the employed persons by labour contract and position arrangements in the building sector as per the classes of occupied positions according to the National Classification of Professions and Positions and subsectors according to the Classification of Economic Activities (CEA) for the period 2008-2009 is illustrated in the table below.

<table>
<thead>
<tr>
<th>Subsectors of CEA 2008 / National Classification of Professions and Positions classes</th>
<th>Number of employed persons by classes of the National Classification of Professions and Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2008 National total</td>
<td>117641</td>
</tr>
<tr>
<td>F Construction</td>
<td>10532</td>
</tr>
<tr>
<td>41. Construction of buildings</td>
<td>5453</td>
</tr>
<tr>
<td>41.1 Activities for implementation of investment projects</td>
<td>148</td>
</tr>
<tr>
<td>Subsectors of CEA 2008 / National Classification of Professions and Positions classes</td>
<td>Number of employed persons by classes of the National Classification of Professions and Positions</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>for buildings</td>
<td></td>
</tr>
<tr>
<td>41.2 Construction of residential and non-</td>
<td></td>
</tr>
<tr>
<td>residential buildings</td>
<td></td>
</tr>
<tr>
<td>42. Construction of facilities</td>
<td></td>
</tr>
<tr>
<td>42.1 Construction of roads, incl. railroads</td>
<td></td>
</tr>
<tr>
<td>42.2 Construction of transmission and</td>
<td></td>
</tr>
<tr>
<td>distribution lines and networks</td>
<td></td>
</tr>
<tr>
<td>42.9 Construction of other facilities</td>
<td></td>
</tr>
<tr>
<td>43. Specialized building activities</td>
<td></td>
</tr>
<tr>
<td>43.1 Clearing and preparation of construction</td>
<td></td>
</tr>
<tr>
<td>site</td>
<td></td>
</tr>
<tr>
<td>43.2 Construction of installations</td>
<td></td>
</tr>
<tr>
<td>43.3 Finishing construction activities</td>
<td></td>
</tr>
<tr>
<td>43.9 Miscellaneous specialized construction</td>
<td></td>
</tr>
<tr>
<td>activities</td>
<td></td>
</tr>
<tr>
<td>2009 National total</td>
<td></td>
</tr>
<tr>
<td>F Construction</td>
<td></td>
</tr>
<tr>
<td>41. Construction of buildings</td>
<td></td>
</tr>
<tr>
<td>41.1 Activities for implementation of</td>
<td></td>
</tr>
<tr>
<td>investment projects for buildings</td>
<td></td>
</tr>
<tr>
<td>41.2 Construction of residential and non-</td>
<td></td>
</tr>
<tr>
<td>residential buildings</td>
<td></td>
</tr>
<tr>
<td>42. Construction of facilities</td>
<td></td>
</tr>
<tr>
<td>42.1 Construction of roads, incl. railroads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>for buildings</td>
<td></td>
</tr>
<tr>
<td>41.2 Construction of residential and non-</td>
<td></td>
</tr>
<tr>
<td>residential buildings</td>
<td></td>
</tr>
<tr>
<td>42. Construction of facilities</td>
<td></td>
</tr>
<tr>
<td>42.1 Construction of roads, incl. railroads</td>
<td></td>
</tr>
<tr>
<td>42.2 Construction of transmission and</td>
<td></td>
</tr>
<tr>
<td>distribution lines and networks</td>
<td></td>
</tr>
<tr>
<td>42.9 Construction of other facilities</td>
<td></td>
</tr>
<tr>
<td>43. Specialized building activities</td>
<td></td>
</tr>
<tr>
<td>43.1 Clearing and preparation of construction</td>
<td></td>
</tr>
<tr>
<td>site</td>
<td></td>
</tr>
<tr>
<td>43.2 Construction of installations</td>
<td></td>
</tr>
<tr>
<td>43.3 Finishing construction activities</td>
<td></td>
</tr>
<tr>
<td>43.9 Miscellaneous specialized construction</td>
<td></td>
</tr>
<tr>
<td>activities</td>
<td></td>
</tr>
<tr>
<td>2009 National total</td>
<td></td>
</tr>
<tr>
<td>F Construction</td>
<td></td>
</tr>
<tr>
<td>41. Construction of buildings</td>
<td></td>
</tr>
<tr>
<td>41.1 Activities for implementation of</td>
<td></td>
</tr>
<tr>
<td>investment projects for buildings</td>
<td></td>
</tr>
<tr>
<td>41.2 Construction of residential and non-</td>
<td></td>
</tr>
<tr>
<td>residential buildings</td>
<td></td>
</tr>
<tr>
<td>42. Construction of facilities</td>
<td></td>
</tr>
<tr>
<td>42.1 Construction of roads, incl. railroads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

33
Table 7. Distribution of the employed persons by labour contract and position in the building sector by classes of the National Classification of Professions and Positions for the period 2008-2009

In the table below, additional data about the employment and economical performance of the workforce in the building sector is presented:

<table>
<thead>
<tr>
<th>Subsectors of CEA 2008 / National Classification of Professions and Positions classes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.2 Construction of transmission and distribution lines and networks</td>
<td>611</td>
<td>472</td>
<td>833</td>
<td>639</td>
<td>213</td>
<td>15</td>
<td>3 447</td>
<td>1 745</td>
<td>2 773</td>
<td>10 748</td>
</tr>
<tr>
<td>42.9 Construction of miscellaneous facilities</td>
<td>794</td>
<td>763</td>
<td>985</td>
<td>906</td>
<td>257</td>
<td>8</td>
<td>5 258</td>
<td>2 203</td>
<td>3 041</td>
<td>14 215</td>
</tr>
<tr>
<td>43. Specialized building activities</td>
<td>2 913</td>
<td>2 625</td>
<td>3 774</td>
<td>4 248</td>
<td>2 119</td>
<td>176</td>
<td>15</td>
<td>737</td>
<td>6 539</td>
<td>17 567</td>
</tr>
<tr>
<td>43.1 Clearing and preparation of the construction site</td>
<td>294</td>
<td>259</td>
<td>244</td>
<td>345</td>
<td>109</td>
<td>13</td>
<td>557</td>
<td>1 565</td>
<td>687</td>
<td>4 073</td>
</tr>
<tr>
<td>43.2 Construction of installations</td>
<td>1 208</td>
<td>1 233</td>
<td>1 821</td>
<td>1 743</td>
<td>681</td>
<td>75</td>
<td>7 838</td>
<td>1 889</td>
<td>5 083</td>
<td>21 571</td>
</tr>
<tr>
<td>43.3 Finishing building activities</td>
<td>672</td>
<td>444</td>
<td>842</td>
<td>1 262</td>
<td>919</td>
<td>61</td>
<td>3 747</td>
<td>1 163</td>
<td>7 181</td>
<td>16 291</td>
</tr>
<tr>
<td>43.9 Miscellaneous specialized building activities</td>
<td>739</td>
<td>689</td>
<td>867</td>
<td>898</td>
<td>410</td>
<td>27</td>
<td>3 595</td>
<td>1 922</td>
<td>4 616</td>
<td>13 763</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Employed persons</th>
<th>Investments per 1 employee</th>
<th>Value Added per 1 employee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thousand people.</td>
<td>BGN.</td>
<td>BGN.</td>
</tr>
<tr>
<td>2000</td>
<td>134</td>
<td>426</td>
<td>9 045</td>
</tr>
<tr>
<td>2001</td>
<td>133</td>
<td>283</td>
<td>10 459</td>
</tr>
<tr>
<td>2002</td>
<td>134</td>
<td>521</td>
<td>10 806</td>
</tr>
<tr>
<td>2003</td>
<td>137</td>
<td>66</td>
<td>11 015</td>
</tr>
<tr>
<td>2004</td>
<td>147</td>
<td>1 087</td>
<td>11 592</td>
</tr>
</tbody>
</table>
Table 8. Data about the employment in the building sector. Source: NSI and the Bulgarian National Bank

The trend in the number of employed persons in the building sector as compared to the total employment in the economy during the period 2000-2010 is demonstrated by the data below:

<table>
<thead>
<tr>
<th>Years</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
<th>Sept 2011*</th>
</tr>
</thead>
<tbody>
<tr>
<td>National economy total, thousand people</td>
<td>3 239</td>
<td>3 215</td>
<td>3 222</td>
<td>3 317</td>
<td>3 403</td>
<td>3 495</td>
<td>3 612</td>
<td>3 727</td>
<td>3 825</td>
<td>3 725</td>
<td>3 506</td>
<td>3 434</td>
</tr>
<tr>
<td>Construction sector, thousand people</td>
<td>134</td>
<td>133</td>
<td>134</td>
<td>137</td>
<td>147</td>
<td>171</td>
<td>214</td>
<td>251</td>
<td>297</td>
<td>271</td>
<td>221</td>
<td>199</td>
</tr>
</tbody>
</table>

Table 9. Employed persons – total for the national economy and in the building sector, 2000-2010, in thousand people (according to NSI data).
5.3. Statistics about energy consumption and renewable energy in buildings

Structure of energy production and energy consumption

<table>
<thead>
<tr>
<th></th>
<th>Percent</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004</td>
<td>2005</td>
<td>2006</td>
<td>2007</td>
<td>2008</td>
<td>2009</td>
</tr>
<tr>
<td>Production of primary energy</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Coal</td>
<td>44,2</td>
<td>39,6</td>
<td>39,1</td>
<td>49,0</td>
<td>48,4</td>
<td>47,6</td>
</tr>
<tr>
<td>Crude oil</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,2</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>2,6</td>
<td>3,6</td>
<td>3,4</td>
<td>2,4</td>
<td>1,6</td>
<td>0,1</td>
</tr>
<tr>
<td>Other solid fuels</td>
<td>7,0</td>
<td>6,6</td>
<td>6,7</td>
<td>7,1</td>
<td>7,0</td>
<td>7,5</td>
</tr>
<tr>
<td>Nuclear and hydroenergy</td>
<td>45,9</td>
<td>49,9</td>
<td>50,5</td>
<td>41,2</td>
<td>42,8</td>
<td>44,1</td>
</tr>
<tr>
<td>Heat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4</td>
</tr>
</tbody>
</table>

Gross consumption of primary energy	**100,0**	**100,0**	**100,0**	**100,0**	**100,0**	**100,0**
Coal	37,2	34,2	33,1	37,9	37,6	36,1
Other solid fuels	4,3	4,0	4,4	4,6	4,1	4,6
Crude oil and feedstocks	30,3	32,6	35,1	35,3	36,9	36,7
Petroleum products	-7,2	-7,8	-10,1	-10,8	-12,4	-11,7
Natural gas	13,2	14,0	14,0	14,9	14,6	12,4
Nuclear and hydroenergy	24,8	26,1	26,8	19,9	21,4	24,2
Electricity	-2,7	-3,2	-3,2	-1,9	-2,3	-2,5
Heat						0,2

Final energy consumption - total	**100,0**	**100,0**	**100,0**	**100,0**	**100,0**	**100,0**
Coal	5,5	5,2	4,8	5,4	4,9	3,8
Fuels from coal and lignite	5,1	3,4	3,2	3,1	1,8	0,8
Crude oil and petroleum products	38,7	39,5	39,8	38,9	37,8	38,6
Natural gas	9,0	10,0	11,1	11,3	11,0	9,3
Electricity	23,8	23,8	23,8	24,5	26,1	27,2
Heat	9,7	9,7	8,9	8,6	9,8	11,0
Renewable fuels and energy, and wastes	8,3	8,4	8,5	8,1	8,5	9,3

36
<table>
<thead>
<tr>
<th>Final energy consumption in households</th>
<th>100,0</th>
<th>100,0</th>
<th>100,0</th>
<th>100,0</th>
<th>100,0</th>
<th>100,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>7,2</td>
<td>7,9</td>
<td>8,5</td>
<td>7,8</td>
<td>8,4</td>
<td>7,0</td>
</tr>
<tr>
<td>Fuels from coal and lignite</td>
<td>6,8</td>
<td>4,7</td>
<td>4,2</td>
<td>3,0</td>
<td>1,5</td>
<td>1,0</td>
</tr>
<tr>
<td>Petroleum products</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Natural gas</td>
<td>0,3</td>
<td>0,7</td>
<td>1,1</td>
<td>1,6</td>
<td>1,8</td>
<td>2,4</td>
</tr>
<tr>
<td>Electricity</td>
<td>35,1</td>
<td>36,6</td>
<td>36,6</td>
<td>38,9</td>
<td>40,6</td>
<td>41,2</td>
</tr>
<tr>
<td>Heat</td>
<td>19,8</td>
<td>20,6</td>
<td>19,2</td>
<td>18,2</td>
<td>16,5</td>
<td>16,8</td>
</tr>
<tr>
<td>Renewable fuels and energy, and wastes</td>
<td>29,5</td>
<td>28,2</td>
<td>29,1</td>
<td>29,3</td>
<td>30,1</td>
<td>30,4</td>
</tr>
</tbody>
</table>

Table 10. Structure of energy production and energy consumption. Source: NSI

Final energy consumption by types of energy resources

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>8915</td>
<td>9293</td>
<td>9721</td>
<td>9528</td>
<td>9419</td>
<td>8475</td>
</tr>
<tr>
<td>Industry</td>
<td>3413</td>
<td>3432</td>
<td>3530</td>
<td>3611</td>
<td>3320</td>
<td>2428</td>
</tr>
<tr>
<td>Transport</td>
<td>2396</td>
<td>2642</td>
<td>2801</td>
<td>2678</td>
<td>2830</td>
<td>2774</td>
</tr>
<tr>
<td>Others</td>
<td>3107</td>
<td>3217</td>
<td>3391</td>
<td>3239</td>
<td>3269</td>
<td>3273</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>273</td>
<td>297</td>
<td>295</td>
<td>265</td>
<td>186</td>
<td>183</td>
</tr>
<tr>
<td>Households</td>
<td>2146</td>
<td>2127</td>
<td>2183</td>
<td>2073</td>
<td>2125</td>
<td>2149</td>
</tr>
<tr>
<td>Coal</td>
<td>486</td>
<td>481</td>
<td>462</td>
<td>516</td>
<td>466</td>
<td>318</td>
</tr>
<tr>
<td>Industry</td>
<td>325</td>
<td>303</td>
<td>266</td>
<td>346</td>
<td>278</td>
<td>160</td>
</tr>
<tr>
<td>Transport</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others</td>
<td>161</td>
<td>178</td>
<td>196</td>
<td>170</td>
<td>188</td>
<td>158</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Households</td>
<td>155</td>
<td>169</td>
<td>185</td>
<td>161</td>
<td>179</td>
<td>150</td>
</tr>
<tr>
<td>Fuels from coal and lignite</td>
<td>452</td>
<td>318</td>
<td>308</td>
<td>296</td>
<td>174</td>
<td>69</td>
</tr>
<tr>
<td>Industry</td>
<td>304</td>
<td>214</td>
<td>214</td>
<td>231</td>
<td>139</td>
<td>43</td>
</tr>
<tr>
<td>Transport</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others</td>
<td>148</td>
<td>104</td>
<td>94</td>
<td>65</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Households</td>
<td>146</td>
<td>101</td>
<td>91</td>
<td>63</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Energy Resource</td>
<td>3453</td>
<td>3669</td>
<td>3869</td>
<td>3705</td>
<td>3561</td>
<td>3271</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Crude oil and petroleum products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>804</td>
<td>777</td>
<td>802</td>
<td>818</td>
<td>596</td>
<td>365</td>
</tr>
<tr>
<td>Transport</td>
<td>2354</td>
<td>2588</td>
<td>2737</td>
<td>2607</td>
<td>2763</td>
<td>2687</td>
</tr>
<tr>
<td>Others</td>
<td>295</td>
<td>304</td>
<td>330</td>
<td>280</td>
<td>202</td>
<td>219</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>233</td>
<td>244</td>
<td>237</td>
<td>204</td>
<td>119</td>
<td>126</td>
</tr>
<tr>
<td>Households</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Natural gas</td>
<td>799</td>
<td>933</td>
<td>1078</td>
<td>1081</td>
<td>1035</td>
<td>791</td>
</tr>
<tr>
<td>Industry</td>
<td>736</td>
<td>831</td>
<td>933</td>
<td>911</td>
<td>845</td>
<td>599</td>
</tr>
<tr>
<td>Transport</td>
<td>6</td>
<td>19</td>
<td>25</td>
<td>37</td>
<td>35</td>
<td>49</td>
</tr>
<tr>
<td>Others</td>
<td>58</td>
<td>83</td>
<td>120</td>
<td>133</td>
<td>155</td>
<td>143</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>22</td>
<td>27</td>
<td>32</td>
<td>32</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>Households</td>
<td>6</td>
<td>14</td>
<td>25</td>
<td>33</td>
<td>39</td>
<td>51</td>
</tr>
<tr>
<td>Electricity</td>
<td>2122</td>
<td>2208</td>
<td>2310</td>
<td>2339</td>
<td>2462</td>
<td>2309</td>
</tr>
<tr>
<td>Industry</td>
<td>835</td>
<td>846</td>
<td>863</td>
<td>875</td>
<td>899</td>
<td>725</td>
</tr>
<tr>
<td>Transport</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>32</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>Others</td>
<td>1251</td>
<td>1326</td>
<td>1413</td>
<td>1432</td>
<td>1533</td>
<td>1546</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Households</td>
<td>754</td>
<td>778</td>
<td>800</td>
<td>806</td>
<td>862</td>
<td>886</td>
</tr>
<tr>
<td>Heat</td>
<td>866</td>
<td>906</td>
<td>866</td>
<td>815</td>
<td>925</td>
<td>931</td>
</tr>
<tr>
<td>Industry</td>
<td>318</td>
<td>335</td>
<td>318</td>
<td>313</td>
<td>463</td>
<td>455</td>
</tr>
<tr>
<td>Transport</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>32</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>Others</td>
<td>548</td>
<td>571</td>
<td>549</td>
<td>502</td>
<td>462</td>
<td>476</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>424</td>
<td>438</td>
<td>419</td>
<td>377</td>
<td>351</td>
<td>361</td>
</tr>
<tr>
<td>Households</td>
<td>424</td>
<td>438</td>
<td>419</td>
<td>377</td>
<td>351</td>
<td>361</td>
</tr>
<tr>
<td>Renewable fuels and energy, and wastes</td>
<td>737</td>
<td>778</td>
<td>828</td>
<td>776</td>
<td>796</td>
<td>786</td>
</tr>
<tr>
<td>Industry</td>
<td>91</td>
<td>126</td>
<td>134</td>
<td>117</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Transport</td>
<td>91</td>
<td>126</td>
<td>134</td>
<td>117</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Others</td>
<td>646</td>
<td>651</td>
<td>689</td>
<td>657</td>
<td>694</td>
<td>705</td>
</tr>
<tr>
<td>Agriculture, forestry and fishing</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Households</td>
<td>634</td>
<td>600</td>
<td>635</td>
<td>607</td>
<td>639</td>
<td>653</td>
</tr>
</tbody>
</table>

Table 11. Final energy consumption by types of energy resources. Source: NSI
Final energy consumption

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>8915</td>
<td>9293</td>
<td>9721</td>
<td>9528</td>
<td>9419</td>
<td>8475</td>
</tr>
<tr>
<td>Industry</td>
<td>3413</td>
<td>3432</td>
<td>3530</td>
<td>3611</td>
<td>3320</td>
<td>2428</td>
</tr>
<tr>
<td>Mining of ores</td>
<td>64</td>
<td>67</td>
<td>72</td>
<td>74</td>
<td>74</td>
<td>71</td>
</tr>
<tr>
<td>Other mining and quarrying</td>
<td>39</td>
<td>44</td>
<td>38</td>
<td>39</td>
<td>43</td>
<td>16</td>
</tr>
<tr>
<td>Foods, beverages and tobacco</td>
<td>286</td>
<td>294</td>
<td>289</td>
<td>276</td>
<td>286</td>
<td>261</td>
</tr>
<tr>
<td>Textiles</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>79</td>
<td>60</td>
<td>49</td>
</tr>
<tr>
<td>Wearing apparel</td>
<td>33</td>
<td>32</td>
<td>33</td>
<td>28</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>Leather, leather and fur clothes, footwear and products</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Wood and products of wood, and cork, plaiting materials</td>
<td>59</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>Pulp, paper and paper products</td>
<td>188</td>
<td>190</td>
<td>168</td>
<td>165</td>
<td>165</td>
<td>70</td>
</tr>
<tr>
<td>Publishing and printing</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Petroleum products</td>
<td>438</td>
<td>432</td>
<td>422</td>
<td>436</td>
<td>380</td>
<td>172</td>
</tr>
<tr>
<td>Chemicals, chemical products and man-made fibres</td>
<td>538</td>
<td>554</td>
<td>575</td>
<td>555</td>
<td>511</td>
<td>435</td>
</tr>
<tr>
<td>Rubber and plastic products</td>
<td>67</td>
<td>65</td>
<td>69</td>
<td>94</td>
<td>133</td>
<td>138</td>
</tr>
<tr>
<td>Other non-metallic mineral products</td>
<td>590</td>
<td>613</td>
<td>673</td>
<td>778</td>
<td>706</td>
<td>524</td>
</tr>
<tr>
<td>Ferrous metals</td>
<td>649</td>
<td>597</td>
<td>616</td>
<td>609</td>
<td>450</td>
<td>202</td>
</tr>
<tr>
<td>Non-ferrous metals</td>
<td>158</td>
<td>154</td>
<td>157</td>
<td>146</td>
<td>158</td>
<td>165</td>
</tr>
<tr>
<td>Casting</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>Metal products, machinery and equipment</td>
<td>90</td>
<td>97</td>
<td>96</td>
<td>98</td>
<td>101</td>
<td>65</td>
</tr>
<tr>
<td>Electrical and optical equipment</td>
<td>23</td>
<td>25</td>
<td>25</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Manufacturing n.e.c.</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Construction</td>
<td>53</td>
<td>70</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td>Transport</td>
<td>2396</td>
<td>2642</td>
<td>2801</td>
<td>2678</td>
<td>2830</td>
<td>2774</td>
</tr>
<tr>
<td>Households, commerce, public authorities, etc.</td>
<td>3107</td>
<td>3217</td>
<td>3391</td>
<td>3239</td>
<td>3269</td>
<td>3273</td>
</tr>
<tr>
<td>Households</td>
<td>2146</td>
<td>2127</td>
<td>2183</td>
<td>2073</td>
<td>2125</td>
<td>2149</td>
</tr>
</tbody>
</table>

Table 12. Final energy consumption. Source: NSI
Renewable energy sources for 2010 – energy consumption

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Hydro energy (less Pumping HPP)</th>
<th>Wind energy</th>
<th>Solar (photovoltaic) energy</th>
<th>Solar (thermal) energy</th>
<th>Geothermal energy</th>
<th>Firewood, wood waste and miscellaneous solid urban waste</th>
<th>Charcoal</th>
<th>Biogas from sewerage sediments</th>
<th>Biodiesel</th>
<th>Miscellaneous liquid biofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross domestic consumption</td>
<td>1437</td>
<td>435</td>
<td>59</td>
<td>1</td>
<td>10</td>
<td>33</td>
<td>882</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Available for end-use</td>
<td>925</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>33</td>
<td>878</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Construction</td>
<td>-</td>
</tr>
<tr>
<td>Other industries</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transport</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Railway transport</td>
<td>-</td>
</tr>
<tr>
<td>Road transport</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Air transport</td>
<td>-</td>
</tr>
<tr>
<td>Domestic water transport</td>
<td>-</td>
</tr>
<tr>
<td>Households, commerce, public organizations and other</td>
<td>767</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>33</td>
<td>721</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Households</td>
<td>716</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>710</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing industry</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>33</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Renewable energy sources for 2010 – consumed energy. Source: NSI

Missing data
There is no available data about:

- The energy efficiency of new and old buildings, as well as about the undertaken measures for energy efficiency improvement;
- Energy from RES produced during the past 3 years;
- The building stock in terms of public, commercial and industrial buildings;
- Data about employment related to professions, levels of qualification and specific building activities;
- RES installations in buildings.
6. Existing VET provisions

6.1. National system for VET of craftsmen and other on-site workers in buildings

6.1.1. Responsible authorities
The Ministry of Education, Youth and Science:

- Approves the State Educational Requirements for acquiring of qualification by professions,
- Endorses the List of Professions for VET;
- Proposes for approval by the Council of Ministers of a List of Regulated Professions in the Republic of Bulgaria;
- Endorses the state plan for admission to the state and municipal schools;
- Ensures conditions for implementation of the State Educational Requirements in the system for VET
- Endorses the qualification programmes in the system for VET;
- Organizes professional orientation;
- Distributes the financial means for VET approved in its budget and controls their implementation;
- Analyzes the results from and effectiveness of VET.

The regional inspectorates on education with the Ministry of Education, Youth and Science implement the state policy in the field of VET in the respective region by:

- Coordinating the interaction between the schools, the vocational training centres and the centres for information and professional orientation and the regional employment offices and labour bureaus, with the regional inspectorates for protection of and control on public health, the bodies of local self-government and the regional structures of the social partners;
- Submitting for review by the commission on employment and later by the ministry of education, youth and science, proposals of the schools concerning the state plan for admission.

The commissions on employment with the districts commissions on regional development coordinate the state plan for admission to the vocational high schools on the territory of the respective region. Members of the commissions on employment are representatives of the social partners, including employers.

The Ministry of Labour and Social Policy (including the Employment Agency, the Regional Employment Office Directorates, and the Labour Office Directorate) participate in the implementation of the governmental policy in the field of vocational education and training by:

- Determining the need of VET through analysis of the trends in the labour market development;
- Participating in the development, coordination and updating of the State Educational Requirements concerning acquisition of qualification by professions;
- Participating in the coordination of the List of Professions for VET.
- Formulating the requirements concerning healthy and safe conditions in the event of practical training and controls their implementation through the regional labour inspectorates;
- Participating in the coordination of the state plan for admission to the schools through the regional employment offices;
- Participating in the arrangements for professional orientation.

The Ministry of Health Care:
- Participates in the coordination of the List of Professions for VET;
- Identifies the chronic illnesses and physical injuries, which are counter-indicative with respect to VET;
- Determines, jointly with the Ministry of Education, Youth and Science, the professions, for which VET is suitable in the case of trainees with chronic diseases and physical handicaps, with sensor damages and mental handicap;
- Determines the requirements concerning healthy conditions during practical training and the medical and physiological requirements concerning the weekly timetables and controls their implementation through the State Health Control.

The branch ministries (the Ministry of Regional Development and Public Works, the Ministry of Economy and Energy, etc.):
- Participate in the development, coordination and updating of the State Educational Requirements for acquiring of qualification by professions;
- Participate in the development, coordination and updating of the List of Professions for VET;
- Participate in the coordination of the state plan for admission in the schools financed by them;
- Distribute the financial means approved in their budgets for VET and control their use.

The municipalities participate in the formation of the policy in the field of VET on their territory with respect to:
- Human resources needs;
- Professional orientation of pupils, unemployed persons and other individuals;
- Distribution of the financial means approved in their budgets for VET and professional orientation and control on their use;
- Development of the material stock of schools, vocational training centres and centres for information and professional orientation through financial means from municipal budgets.
- Determination of the state plan for admission to schools.
The national representative organizations of employers nominate their representatives for participation in the:

- Development, updating and coordination of the List of Professions for VET;
- Development, coordination and updating of the State Educational Requirements for acquiring of qualification by professions;
- Organization and conducting of exams for acquiring of professional qualification and nominate their representatives to sit as members of the examination commissions.

The national representative organizations of workers and public servants:

- Participate in the updating of the State Educational Requirements for acquiring of qualification by professions;
- Participate in the development, updating and coordination of the List of Professions for VET;

The branch trade union organizations:

- protect the interests of the trainees before the employers on issues related to:
 - work and insurance relationships during conducting of practical training in enterprises;
- participate in the organization and conducting of exams for acquiring of professional qualification and nominate their representatives to sit as members of the examination commissions.

The National Agency for Vocational Education and Training (NAVET) coordinates the institutions related to professional orientation, education and training. The NAVET (through its Management Board) operates on a tripartite principle – equal quotas of the state, employers and workers-and-staff organizations. Expert commissions by professional directions, whose membership is formed also on the tripartite principle, are set up with the Management.

According to the Law on VET the functions of NAVET are as follows:

- It develops criteria and procedures on licensing;
- It issues or withdraws licenses for vocational training and professional orientation;
- It performs control on the activities of the licensed institutions in the vocational training system;
- It develops and proposes to the minister of education, youth and science a list of professions for VET and state educational requirements for acquiring of qualification by professions;
- It participates in the development of the state educational requirements for the documents for the national education system and the system for evaluation in their portion related to vet;
- It creates and maintains a registry of vocational training centres and the centres for information and professional orientation with respect to the issued and withdrawn licenses.
In reality, through its work on international and national projects and its representation in different structures (commissions, working groups) NAVET disseminates and adapts the EU recommendations in the field of VET on the national level.

The National Chamber of Crafts supports and defends the joint interests of craftsmen in Bulgaria, provides assistance for the development of trades/crafts and for establishment of their prestige. The Chamber helps for the preservation and development of the traditional Bulgarian crafts. The National Chamber of Crafts:

- Participates in the development of projects and prepares position papers on regulatory acts related to trades/crafts and training in trades/crafts;
- Prepares standards for training on individual crafts from the Law on Crafts and coordinates the training programmes on individual trades/crafts, prepares rules for conducting of exams;
- Issues craftsmen certificates and maintains a national registry on craftsmen on the basis of the regional registries.

According to the Law on Crafts the standards, training programmes and rules for conducting exams should be endorsed by NAVET.

The regional trade chambers:

- Support craftsmen from the region in the arrangement and conducting of trade/crafts training, they organize exams for recognition of qualification in trades/crafts and issue certificates for journeymen;
- Cooperate with institutions from the vet system and the system of higher education;
- Develop programmes for training of craftsmen depending on the needs of the specific region and coordinate them with the National Chamber of Crafts, which submits them for endorsement by NAVET; and finally they post the approved programmes on their respective websites;
- Through the national association “work co-operative of folk-art-craftsmen” and the branch organizations members of the National Chamber of Crafts they assist for the practical training of craftsmen and creation of jobs for acquiring of experience and qualification of journeymen from the branch organizations.

6.1.2. Accreditation bodies and training providers

NAVET issues licenses to the centres for vocational training of adults (above 16 years of age) applying criteria and procedure approved by its Management Board. The criteria are related to:

- Legal compliance of the candidate;
- Existence of a system for management of the centre;
- Existence of a system for guaranteeing good quality of the training (including worked out training plans and programmes);
- Existence of measures for in-house surveillance (monitoring);
- Available resources (trainers, material stock for teaching theory and practice).
The vocational training centres perform professional training (for acquiring of profession or training on some part of a given profession) to persons above 16 years of age in professions of 1st, 2nd and 3rd Level of professional qualification under the List of Professions for VET (assistant in building, welder, builder, energy system installer, building technician, electrician), for which they possess a license. The training is conducted on the basis of the training plans and programmes submitted to NAVET in the framework of the licensing procedure, which are in compliance with the State Educational Requirements by professions. The training ends with the issue of recognized nationwide document (after successful passing of exams in theory and practice) – Certificate for professional qualification or Certificate for professional training.

The Ministry of Education, Youth and Science opens, reconstructs and closes vocational schools, vocational high schools and vocational colleges following the procedure envisaged in the Law on Peoples’ Education (by virtue of order of the Minister of Education, Youth and Science). In order to open an institution (class) for vocational training it is necessary to submit to the Ministry of Education, Youth and Science arguments about the need of such act (regional need of people with such qualification), as well as evidence about the existence of the resources necessary for training (trainers and material stock for training in theory and practice).

Vocational schools provide elementary professional education with acquirement of 1st and 2nd Level of professional qualification and qualification on part of a given profession for a length of study 4 years. Admitted are pupils, who have graduated at least the 6th grade in public schools. Vocational schools may provide also vocational training on the grounds of an order of the Minister of Education, Youth and Science if they comply with the requirements formulated in the State Educational Requirements. Vocational schools may organize education of people of more than 16 years of age as well. Training in professions for the building sector is currently provided by 2 vocational schools.

Vocational high schools provide professional education for acquiring of 2nd Degree of professional qualification for length of study 4 years or 3rd Degree professional qualification for length of study 4 or 5 years. Admitted to them are pupils, who have graduated elementary school or 7th grade in a public school. Vocational high schools may provide also professional training leading to acquirement of 1st, 2nd and 3rd Degree of professional qualification and qualification on part of a profession. Vocational high schools may provide also professional training for acquirement of 4th Degree of professional qualification on the grounds of order by the Minister of Education, Youth and Science, it they comply with the conditions specified in the State Educational Requirements. Vocational high schools for training in construction-related professions (more than 29), as well as professions related to electrical engineering and the energy sector exist in all the district centres.

Vocational colleges perform professional training for acquirement of 4th Degree of professional qualification for a study period of 2 years, depending on the already possessed degree of professional qualification. Admitted to them are individuals, who have graduated secondary education. In the field of construction there is no training in vocational colleges, one of the reasons for that being the absence of a profession with 4th Degree of professional qualification in that sector. Vocational colleges declare to the Minister of Education, Youth and Science their wish to provide training by submitting to the Ministry the required documentation, evidencing the availability of material stock, teaching body, training plans and programmes. College training is
usually of 2-year duration and comprises, beside professional training, also general knowledge, and necessary for successful practicing of the profession. The vocational training is realized entirely in compliance with the Law on VET.

Training under the Law on Crafts of apprentices, journeymen and craftsmen in the respective trade (from the list of crafts with the Law on Crafts) is performed in enterprises organized in the trade manner or in the National Association “Work Cooperative of Folk-art-craftsmen” on the basis of programmes and under conditions endorsed by the National Chamber of Crafts. The exams for acquiring a certificate for journeymen and craftsmen are conducted by commissions (nominated by the regional or respectively National Chamber of Crafts). Opportunity is provided for acquiring a journeyman certificate by individuals, who have not done apprenticeship in an enterprise organized in the trade manner, under the following two conditions: individuals, who have practiced the trade for at least 3 years and have successfully passed the journeyman exam; individuals, who possess 2nd or 3rd Degree of professional qualification under the Law on VET, if it corresponds to a given trade from the list with the Law on Crafts.

There are training centres (schools, universities). which organize training in implementation of Ordinance No. 2 of 17 January 2001 concerning the conditions and procedures for acquiring and recognition of the right to practice the profession of steam or water heating boiler service technician for the purpose of issue of Professional Certificate for: operator of low-pressure boilers, operator of high pressure boilers 3rd, 2nd and 1st Level, operator of energy boiler or operator of energy block. The quoted professions are regulated professions, whereas training for mastering the competences necessary for their practicing might be provided also in institutions governed by the Law on VET. Possession of Professional Certificate in strict compliance with the requirements of Ordinance No. 2 is required for practicing the profession.

Vocational training may be performed also in other ways and by other institutions not mentioned above. It is, however, not subject to supervision and control by the responsible institutions. It might not be in compliance with the State Educational Requirements, might not end with the issue of governmentally recognized document and is not financed with funds from the State Budget, national or EU programmes.
EXPANDED LIST OF PROFESSIONS FOR VOCATIONAL EDUCATION AND TRAINING under the BUILD UP Skills Project
The professions on brown background are very closely related to energy efficiency

<table>
<thead>
<tr>
<th>Professional direction</th>
<th>Title of the profession</th>
<th>Title of the subject field</th>
<th>Degree of professional qualification</th>
<th>Positions and isolated groups in the National Classification of Professions and Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 BUSINESS MANAGEMENT AND ADMINISTRATION</td>
<td>341 Wholesale and retail trade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>341030 Broker 3410301 Real estate transactions</td>
<td></td>
<td></td>
<td>3413-3001 3413-3002</td>
</tr>
<tr>
<td>52 TECHNOLOGY</td>
<td>521 Machine tools engineering, metal processing and metallurgy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>521030 Machine tool operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5210303 Welding machines and equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>521090 Welder 5210901 Welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>522 Electrical engineering and energy sector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>522010 Electrician</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5220109 Electrical wiring systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>522020 Electric fitter / installer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5220210 Electrical wiring systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5220211</td>
<td>Electric household appliances</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5220212</td>
<td>Power engineering</td>
</tr>
<tr>
<td>522030</td>
<td>Technician in energy equipment and systems</td>
<td></td>
<td>5220306</td>
<td>Gas-fired equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5220308</td>
<td>Renewable energy sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5220309</td>
<td>Thermal engineering</td>
</tr>
<tr>
<td>522040</td>
<td>Installer of energy equipment and systems</td>
<td></td>
<td>5220406</td>
<td>Gas-fired equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5220408</td>
<td>Renewable energy sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>522060</td>
<td>Stoker</td>
</tr>
<tr>
<td>543</td>
<td>Manufacturing technologies – wood-working, pulp and paper, plastics and glass</td>
<td>543010</td>
<td>Technician – production line operator in wood-working</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5430107</td>
<td>Manufacture of doors and windows</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5430109</td>
<td>Wood-cutting and packaging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5430110</td>
<td>Manufacture of timber boards and bonded timber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5430111</td>
<td>Production of building products from wood</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>543020 Operator in wood processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5430206 Wood-cutting, packaging and production of parquet</td>
<td></td>
<td>7124-2002 7132-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5430207 Manufacture of timber boards</td>
<td></td>
<td>7124-2002 Stand-alone groups 8240 8141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5430208 Manufacture of veneer and bonded timber</td>
<td></td>
<td>7124-2002 Stand-alone groups 8240 8141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>543090 Worker in wood-processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5430905 Production of doors and windows</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

58 ARCHITECTURE AND CONSTRUCTION

<table>
<thead>
<tr>
<th>581</th>
<th>581010</th>
<th>Architecture, urbanism and geodesy</th>
<th>Geodesist</th>
<th>5810101</th>
<th>Geodesy</th>
<th>3112-3003 3112-3006 3112-3007 3118-3002 3118-3008 3118-3016 1223-3006</th>
</tr>
</thead>
<tbody>
<tr>
<td>582</td>
<td>582010</td>
<td>Construction</td>
<td>Building technician</td>
<td>5820101</td>
<td>Construction and architecture</td>
<td>3112-3004 3112-3007 3112-3009 3118-3002 3118-3005 3118-3014 3413-3001 3413-3002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5820103 Water construction</td>
<td></td>
<td></td>
<td></td>
<td>3112-3001 3112-3002 3112-3007 3118-3005 3118-3014 1223-3006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>582030 Builder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

50
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>582080</td>
<td>Assistant in</td>
<td>□</td>
<td>9313-0001</td>
<td>9313-0002</td>
<td>9312-0001</td>
</tr>
</tbody>
</table>
Table 14. Expanded list of professions for VET under the BUILD UP Skills Project Bulgaria

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>construction</td>
<td></td>
<td></td>
<td>9312-0003 9312-0004 9312-0005 9312-0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9312-0007 9312-0008 9312-0009 9312-0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9312-0012 9312-0013</td>
</tr>
</tbody>
</table>
6.1.3. By craft/profession: number of courses/year, implementing body/organisation, number of workers taking the courses/year, content of courses, certification, funding sources

Training in the national education system

The training in the system of national education is performed using funding from the State Budget. Payment of fees by the students is not required.

The number of students, who have acquired professional qualification 2nd Level in professions in the sphere of construction in 2010 is 906 (total for all professions 14,834). As compared to 2000 a total of 1,278 people have received Professional Qualification Certificate in professions 2nd Degree in the field of construction (according to NSI data).

The number of students, who have acquired professional qualification 3rd Level in professions in the sphere of construction in 2010 is 641 (total for all professions 9,366), which is less than the number of graduates in the 2000 academic year, when 1,680 people have received Professional Qualification Certificate in professions 3rd Degree (NSI data).

A trend of diminishing of the number of people taking and graduating training in professions in the field of construction (especially professions of low – 1st and 2nd – Level of professional qualification) has been noted.

Currently in the system of school education in the professions object of this analysis the following numbers of pupils are taking training:

Professional direction “Electrical engineering and energy sector”

![Number of trainees in vocational high schools and schools during the 2011/2012 academic year](image)

Fig. 8. Number of trainees in vocational high schools and schools during the 2011/2012 academic year, professional direction electrical engineering and energy sector.
Fig. 9. Number of trainees in vocational high schools and schools during the 2011/2012 academic year, professional direction “Construction”.

In how many schools and vocational training centres is offered training in these professions?

Fig. 10. Number of schools offering training in professions in professional direction “Electrical engineering and energy sector”.
Fig. 11. Number of schools offering training in professions in professional direction “Construction”.

Fig. 12. Number of vocational training centres licensed to conduct training in professions in professional direction “Electrical engineering and energy sector”.

55
6.1.4. Certification and accreditation framework

The certification of persons, who have successfully graduated their training in professions and crafts from the List of Professions for VET, is performed in compliance with the Law on VET (Articles 34-40).

For acquiring a Professional Qualification Certificate the successful graduates of training for acquiring a professional qualification degree (in a school or vocational training centre) should pass state exams in theory and practice in the given profession. The pupils should also pass with success the state maturity exams for graduation of their secondary education in accordance with the provisions of the Law on Level of Education, the general educational minimum and the curriculum.

The organization of the exams is performed in compliance with the state educational requirement concerning the system of evaluation.

As members of the commissions for conducting of the exams are included members of the training institutions, representatives of employers and representatives of the workers and staff with equal quotas.

There are certain requirements with respect to the representatives of the social partners, who sit as members of the commissions, namely that they should possess
professional qualification in the respective professional field and have service record of not less than four years in the respective profession.

The practice and the interviews with headmasters of vocational high schools in the field of construction have revealed that the representatives of the Bulgarian Construction Chamber take an active part through their representatives in the commissions for conducting of the state exams.

The state exams in the theory and practice of the given profession are conducted following the national examination programmes, worked out in compliance with the state educational requirements for acquiring professional qualification. The national examination programmes (NEP) contain the evaluation criteria. With respect to the theoretic exam NEP contain also examination themes with plan-theses for the examination tickets; for the practice exam only evaluation criteria and for preparation of practical assignments. NEP is endorsed by the Minister of Education, Youth and Science.

Graduated vocational education or vocational training is certified after successful passing of the state exams by virtue of Professional Qualification Certificate.

If practicing of the acquired profession requires a license, it is possible to obtain also a License Certificate, which is issued under the conditions of the respective ordinances.

Vocational training on part of a given profession is completed by taking exams in theory and practice, the organization and contents of which are determined by the training institution proper in compliance with the State Educational Requirements by professions.

For successful completion of vocational training for acquiring qualification on part of a given profession is issued a Professional Training Certificate.

The rights to issue documents for professional qualification have vocational high schools, vocational colleges and vocational training centres, which possess the respective license from NAVET.

The law gives the citizens the right to apply for receiving one of the two documents also in the event that they have not been trained under the VET system. The candidates to obtain a certificate should pass with success the exams in theory and practice of the given profession, having proven beforehand that they have not less than six months service in the profession, as well as the required educational level for the respective degree of professional qualification (secondary school for 3rd and 4th Level, graduated 10th grade for 2nd Level and graduated 6th grade or completed literacy programme under the Law on Promotion of Employment for 1st Level).

In the field of construction there are a great number of people, who learn the profession on-site and comply with the above mentioned conditions. There are no statistical data what portion of them has been certified.

Certification of individuals trained under the Law on Crafts is done after successful passing of exams conducted in compliance with a regulation for conducting of journeyman exam and respectively a regulation for conducting of craftsman exam, conducted by the National Chamber of Crafts. The examination commissions are set up for a specific mandate and their membership is proposed by the regional trade chambers. The exam for journeyman is only one and comprises checking of knowledge and skills, and the exam for craftsman is conducted in three parts:
practical, theoretical (comprising knowledge in the field of organization and management of the enterprise) and pedagogical.

The certificates issued after successful passing of the exams are Journeyman Certificate and respectively Craftsman Certificate.

Acquiring of License Certificate is required for practicing of regulated professions (for instance "Boiler operator"). The training, examination and certification should be performed under the conditions of Ordinance No. 2 of 17 January 2001 concerning the conditions and procedures for acquiring a license and recognition of the right to practice the profession related to services of steam and water heating boilers.

"Accreditation" does not exist under the Bulgarian legislation. Permanent permit to perform vocational training is granted to vocational training centres through the licensing procedure with NAVET and to schools and colleges – through submission of application to the Ministry of Education, Youth and Science.

There are circumstances, under which the license of a vocational training centre may be withdrawn (spelled out in the Law on VET) and for the schools and colleges the Minister of Education may not permit realization of admission for certain professions.

The conditions for licensing of vocational training centres and for issue by the Minister of Education, Youth and Science of permission to schools and colleges are presented above.

Systems for evaluation of the quality exist in the vocational training of adults and in vocational education as well.

6.1.5. The extent to which the current system already addresses skills (competences) of VET graduates for implementation of energy efficiency and renewable energy measures in buildings

Learning of new skills, necessary for implementation of energy efficiency measures in construction and operation of buildings, is provided for at several levels:

- Existence in the List of professions for VET of specific professions related to implementation of energy efficiency and renewable energy measures in buildings, for instance special skills orientation "Renewable energy sources" in the professions "Installer" and respectively "Technician" of energy facilities and systems;

- Incorporation in the State Educational Requirements by professions of new knowledge, skills and competences related to energy efficiency measures in professions like electrician, electric installer, builder, builder-assembler etc.

- Changes in the training plans and programmes – for schools with permission by the Ministry of Education, Youth and Science and for the centres for vocational training – at the initiative of the centres proper.;

- Addition of new themes in the course of training (which are not clearly mentioned in the training programmes) during the process of planning of the training in the respective subject in the annual distribution of the classes or the respective course in the centre for vocational training.

To date no proposals have been submitted for changes in the State Educational Requirements or the training plans and programmes.
6.1.6. Existing instruments to monitor market developments in terms of technologies, skills requirements and training / sector skills councils

To date there are no observations, analyses and forecasts as regards the changing labour market demands for individuals with a specific qualification in connection with changes in the technologies, the structure of the economy or other factors (outside the framework of individual short-term projects).

Structures, which are entitled to propose changes in VET and which are the closest to the so-called “sector skills councils” are the Expert Commissions on Professional Directions with NAVET (for instance commissions on: architecture and construction; electrical engineering and energy sector; machine tools engineering, metal processing and metallurgy). These are 9-member commissions, which incorporate three representatives of the state, the branch employer organizations and trade unions. Their functions are as follows:

- They prepare reports to the President of NAVET with proposals for the issue, refusal to issue or withdrawal of licenses to vocational training centres in professions of the respective sector;
- They participate in the working out and updating of the State Educational Requirements for acquiring qualification in professions of the respective professional direction;
- They participate in the working out and updating of the List of professions for VET in the respective sector.

The expert commission “Architecture and construction” is comprised of representatives of the Ministry of Education, Youth and Science, the Ministry of Labour and Social Policy, the Ministry of Regional Development and Public Works, the Bulgarian Construction Chamber, the Association of Geodetic Companies, the Bulgarian Trade and Industry Chamber, the Confederation of Independent Syndicates in Bulgaria and the “Construction, Industry and Water Supply” Federation within the “Podkrepa” Labour Confederation.

Sector commissions for evaluation of competences are set up in the framework of a project implemented by the Bulgarian Industrial Chamber and financed by the OP “Human Resources Development”. Their functions are expected to be expanded and to lead to assessment of the needs of training of individuals in specific qualification at sector and enterprise level. Unfortunately, construction is not one of the 20 sectors included in that project, for which such commissions will be structured and for which resources will be allocated to support their work.

Development of a system (including instruments) for short-term and medium-term forecasting of the needs of qualified workforce at the level of standing-alone group from the National Classification of Professions and Positions (with ambitions to get to a forecast on the level “position”) is expected in the framework of projects of the Ministry of Labour and Social Policy, financed under the OP “Human Resources Development” and “Progress” Programme.

There exist an opportunity for enterprises, employers’ organizations etc. to propose new professions for training in the building sector – NAVET possesses an elaborated procedure for incorporation of new professions in the List of professions for VET. It includes detailed rules for submission of such proposals, as well as the documents to
be submitted in order to prove the need of training of individuals with such qualification.

There are also possibilities for proposal of changes (additional) with respect to the currently offered training (in the State Educational Requirements by professions in the training plans and programmes of the vocational high schools and vocational schools). The proposals for changes may be addressed either to the Ministry of Education, Youth and Science or to NAVET, whereat according to its competence the respective institution will submit the proposal for review (NAVET submits the proposals to the expert commissions and the Ministry of Education, Youth and Science may refer them either to the experts from its Professional Qualification Department or to re-address them to NAVET).

The proposals for changes with respect to admission in vocational high schools and schools on the territory of a given district (for instance opening of classes for training from the List of Professions for VET, for which currently there is no such training in the region) should be addressed to the Regional Inspectorate on Education with the Ministry of Education, Youth and Science and to the Regional Development Commission with the District Governor – the Employment Commission.

The practice reveals that the engagement of partnerships with representatives of the training institutions, experts from the Ministry of Education, Youth and Science and NAVET in the preparation of such proposals accelerates the process of review of the proposals and prevents the drafting of proposals which contradict the enforced regulatory framework (or propose changes which have already been made).

One serious problem with respect to the introduction of training on themes related to new technologies, materials and systems appears to be the absence of possibilities and clear regulations concerning the upgrading of the qualification of teachers. There are no adequate forms of teacher training. The existing teacher training modalities are oriented towards theory and practice of tuition (teaching and evaluation methods, planning of the training process etc.), but not towards mastering of knowledge and skills related to changes in the construction know-how, for instance.

6.2. Courses and training schemes on energy efficiency and renewable energies in buildings, which exist but are not (yet) part of the national continuing VET system

In order to prepare people for auditing, development of plans and programmes for energy efficiency improvement and certification under Article 36 of the Energy Efficiency Act and in compliance with the requirements of Article 20 of Ordinance No. RD-348/02 April 2009 concerning the circumstances subject to entry in the registry of individuals performing certification of buildings and energy efficiency auditing, the procedure for obtaining information from the registry and the conditions and procedures for acquiring and recognition of rights, training sessions are organized (by the Sustainable Energy Development Agency, the Technical University of Sofia, the Technical University of Varna, the Technical University of Gabrovo and the Technical University of Plovdiv, consultancy companies, staff training under Article 36 Paragraph 2) in the subject of energy efficiency auditing and certification of buildings. The training sessions are oriented predominantly to engineers and architects, but persons with professional qualification in construction and graduated secondary education may also join them. The duration of the course is 90 hours, which comprises theoretical and practical sections. The contents of the course comprise the
requirements of the specific regulatory framework, basic principles of energy exchange in industrial systems and sites, techniques of how to perform an energy efficiency audit in such systems, methods for identification and assessment of their energy performance, specific particularities of how to reduce energy consumption in the individual subsystems, the procedure and rules for establishment of a company standard for energy efficiency of industrial systems. Special attention is paid to the cost-efficiency evaluation of the decisions for reduction of energy consumption, as well as of the monitoring of the final result.

Training courses are organized also by companies, which are manufacturers of importers of equipment, materials and systems, whereat some of them, including some large construction companies, have obtained licenses for their own centres for vocational training (“Devnya Cement” plc, “Orgachim” plc, STS “Engineering”, “Enemona” plc, “Matev Story” SP Ltd., “Kurortno Stroitelsctvo (Holiday Facilities Construction)” Ltd., “Glavbolgarstroy” plc, “Baumit-Bulgaria” SP Ltd. etc.).

<table>
<thead>
<tr>
<th>Profession, craft, code</th>
<th>Number of licensed centres for vocational training, offering training by professions in 2011</th>
<th>Number of persons trained in that profession in 2010</th>
<th>Method of funding of the courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electrician – Electrical wiring systems - 5220109</td>
<td>16</td>
<td>14</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>2. Electricity installer - Electrical wiring systems - 5220210</td>
<td>123</td>
<td>1394</td>
<td>EU programmes, the Employment Agency, the trainees, the employer, other</td>
</tr>
<tr>
<td>3. Electricity installer – Power engineering - 5220212</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Technician of energy equipment and systems – Renewable energy sources - 5220308</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5. Technician of energy equipment and systems – Thermal engineering - 5220309</td>
<td>10</td>
<td>39</td>
<td>The Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>6. Installer of energy equipment and systems - RES – 5220408</td>
<td>9</td>
<td>17</td>
<td>The employer</td>
</tr>
<tr>
<td>7. Installer of energy equipment and systems – Thermal engineering - 5220409</td>
<td>67</td>
<td>459</td>
<td>EU programmes, the trainees, the employer, other</td>
</tr>
<tr>
<td>8. Construction – Construction technician – Civil engineering and architecture - 5820101</td>
<td>36</td>
<td>395</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>9. Construction – Construction technician – Water engineering - 5820103</td>
<td>16</td>
<td>39</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>10. Construction – Builder – Shuttering - 5820302</td>
<td>237</td>
<td>549</td>
<td>EU programmes, the Employment Agency the trainees, the employer</td>
</tr>
<tr>
<td>11. Construction – Builder – Reinforcement and concrete</td>
<td>238</td>
<td>634</td>
<td>EU programmes, the Employment Agency, the</td>
</tr>
<tr>
<td>Course Description</td>
<td>Participants</td>
<td>Staff</td>
<td>Training Provider</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>12. Construction – builder – Masonry - 5820304</td>
<td>266</td>
<td>251</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>13. Construction – Builder – Plasters and gypsum wall plaster - 5820305</td>
<td>262</td>
<td>258</td>
<td>EU programmes, the Employment Agency the trainees, the employer, other</td>
</tr>
<tr>
<td>14. Construction – Builder – Indoor sheathing and flooring – 5820306</td>
<td>264</td>
<td>395</td>
<td>EU programmes, the Employment Agency the trainees, the employer, the employer, other</td>
</tr>
<tr>
<td>15. Construction – Builder – Outdoor sheathing and pavements - 5820307</td>
<td>234</td>
<td>399</td>
<td>EU programmes, the Employment Agency the trainees, the employer, other</td>
</tr>
<tr>
<td>16. Construction – Builder - Roofing - 5820312</td>
<td>158</td>
<td>139</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>17. Construction – Builder-assembler – Reinforced concrete structures - 5820401</td>
<td>103</td>
<td>47</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>18. Construction – Builder-assembler – Metal structures - 5820402</td>
<td>116</td>
<td>117</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>19. Construction – Builder-assembler – Dry construction - 5820403</td>
<td>131</td>
<td>272</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>20. Construction – Builder-assembler – Window frames and glazing - 5820404</td>
<td>138</td>
<td>135</td>
<td>EU programmes, the Employment Agency, the trainees, the employer</td>
</tr>
<tr>
<td>21. Construction – Builder-installer – Building insulations - 5820405</td>
<td>31</td>
<td>103</td>
<td>The employer</td>
</tr>
<tr>
<td>22. Construction – Furnace builder - Furnace building - 5820701</td>
<td>3</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>23. Construction – Assistant in construction – Rough and finishing works - 5820801</td>
<td>68</td>
<td>1116</td>
<td>EU programmes, the Employment Agency, the trainees, the employer, other</td>
</tr>
</tbody>
</table>

Table 15. Courses and training schemes on energy efficiency and renewable energies in buildings. Source: NAVET

6.3. Relevant initiatives at national/regional level supported by the EU

In the framework of what has been done for the purposes of this analysis we have identified projects, which are oriented towards training of professionals for energy efficient construction and maintenance of buildings. The projects have been implemented by state institutions, municipalities, private companies, employers' associations and training institutions under the programmes “Intelligent Energy Europe” and “Leonardo da Vinci”.

62
Training in “European consultant on energy efficiency and building materials”

In the framework of the ECOESA Network (http://ecoesa.divergenz.de/index/2000/), funded by the “Leonardo da Vinci” Programme, modular training in “European consultant on energy efficiency and building materials” was launched. It comprises the following themes:

“Analysis of the needs in Romania and Bulgaria”;

“Regulatory framework related to construction in Germany, Austria, the Czech Republic, Finland, Hungary, Bulgaria and Italy”;

“Training programme for modular training for qualification upgrading”:

• Retrofitting of buildings and

• Funding models.

The network proper is open and new institutions may join it.

Training for installers of small-scale RES systems in buildings

Since May 2010 the “John Atanasov” Vocational High School of Electronics is partner of the European project “Training courses for installers of small-scale RES systems in buildings” (http://www.resinstaller.eu). The project with acronym “Install+RES”, funded under the “Intelligent Energy Europe” Programme, is with duration of 36 months. The main objectives of the “Install+RES” Project are to set up training courses for trainers and for qualification of installers of RES systems like biomass, solar systems for DHW, photovoltaic and heat pump systems in European states like Bulgaria, Greece, Italy, Poland and Slovenia. This is implemented in compliance with the requirements of Directive 2009/28/EU. The expected result is qualification and certification of 48 installers of RES systems in each of the countries in the period 2011-2013 in three courses – one pilot course and two training courses.

Distance training for renovation of residential buildings

The “Energy Centre Sofia” Ltd. implements a project “Intelligent energy training for renovation of residential buildings”, funded under the “Intelligent Energy Europe” Programme.

The objective of the “IE-training” Project is to offer dwelling owners and housing associations a training programme to motivate them to implement energy renovation of their buildings. The “IE-training” programme is based on examples for best practices in Europe, which focus on practical solutions, such as how through refurbishment some 30% reduction of energy costs and improvement of the comfort in dwellings can be achieved.

An electronic platform (http://ei-education.aarch.dk) has been developed as one of the major outputs of the programme. It contains a possibility for distance learning, reference to additional materials and a database about successful implementations under the sections “Technology and environment”, “Policy and strategy” and “Organization and funding”.

Training on implementation of RES solutions in energy renovated buildings

The Bulgarian Chamber of Commerce and Industry in consortium with partners from six more countries is implementing the project “REE_TROFIT” – “Training in application of solutions with renewable energy in energy renovation of buildings” –
financed under the “Intelligent Energy Europe” Programme. The duration of the project is 36 months (2010-2013).

The objective of the project is to promote introduction of institutionalized vocational training in the use of RES and energy renovation of buildings for the purposes of overcoming the shortage of local qualified and certified building craftsmen and for introduction in practice the European Directive on energy efficiency in buildings.

“REE_TROFIT” will develop a model of European vocational training, comprising concrete platforms for the training material and handbooks on the training methods. Three training programmes will be worked out for the following trades: building technicians, technicians and installers of energy equipment and systems, i.e. craftsmen, who are involved in the processes of renovation of buildings. The programmes are developed in compliance with the labour market demand and the required skills, which these three groups of craftsmen should possess and develop. The courses will be conducted in three phases in the countries-partners under the project.

The module for electricians comprises subjects related to energy efficiency, photovoltaic generators (systems and dimensioning), co- and tri-generation, domestic wind turbines, energy saving lighting, in-house automation. The module for building technicians comprises the subjects building retrofit and energy saving, insulation of vertical and horizontal building components, window elements, integration of different construction systems and elements. The HVAC craftsmen module comprises the following subjects: analysis of energy consumption, district heating – preheating pumps and generator, solar heat systems, space heating with biomass, geothermal systems, energy saving and ventilation systems.

Training in the field of space heating equipment, gas supply, technical operation of wind farms, photovoltaic parks

Sliven Municipality, jointly with six more countries, is partner under the “SUNFLOWER” project, funded by the “Intelligent Energy Europe” Programme. The objective of the project is to promote, disseminate and popularize good practices of use of RES, which contribute to sustainable local development.

The training performed in the framework of the project is of 5-day duration and comprises the following themes:

- Modern trends in the development of energy efficiency in buildings. Energy performance of buildings – the experience of Bulgaria and good practices from Europe;
- How to create a company in Bulgaria: photovoltaic plants, small HPPs, wind farms;
- Decentralized cogeneration systems using biomass – application in industry. Examples from good practices with application of co-generation modules;
- Energy efficiency and the use of RES in the technological process of industrial systems. Energy transformation with low emissions of harmful gases;
- Zero GHG emissions from the residential buildings. Solar systems for DHW and their application in the space heating system of residential buildings;
- Examples of good practices with application of biomass;

The training comprises a theoretical part, meetings with representatives of companies, which have implemented successful projects, as well as site visits.

Training of specialists in renewable energy sources and technologies in the sanitary, space heating and air-conditioning systems

The National Installers’ Union, jointly with two more states, has implemented the project “SIRET” – “Specialists in renewable energy sources and technologies in sanitary, space heating and air-conditioning systems”, directed towards identification and popularization of good practices in the field of vocational training on RES. The project was funded by the “Leonardo da Vinci” Programme in the period 2008-2010. In the framework of the 3-day training under the project were incorporated the following themes: Solar technologies; Co-generation; Heat pumps; Biomass; Renewable energy; Solar heat energy; Photovoltaic systems.

Electronic educational platform for the young generations in the field of sustainable energy

The Sustainable Energy Development Agency has worked on the “Energy Path” project – “Electronic educational platform for the young generations in the field of sustainable energy”. It was funded under the “Intelligent Energy Europe” Programme. It was implemented in the period 2006-2008 jointly with representatives from 9 countries – Spain, Belgium, Greece, France, Italy, Great Britain, Norway and Slovenia. The “Energy Path” project is oriented towards pupils from the last three grades of secondary school education and through them towards a broader circle – parents, friends and relatives.

14 schools-partners from Sofia, Pernik, Pleven and Kazanlak also took part in project as project partners.

In the framework of the project was created an electronic educational platform (http://www.energypath.eu/e-learning/), in which can be found materials on the following subjects: “Energy”, “Renewable energy sources”, “Energy efficiency” and “Transport and mobility”. In the framework of the project have been conducted training courses for teachers, in order that they could use the platform in the course of teaching.

Development of a Guidebook for energy intelligent retrofitting of buildings

The Bulgarian Construction Chamber, jointly with partners from three more countries, is implementing the “Euro EnEff” project – “Development of a guidebook for energy intelligent retrofitting of buildings” (http://www.euroeneff.eu/), funded under the “Leonardo da Vinci” Programme during the period 2008-2010. In the framework of the project was developed and approbated a guidebook for teachers and trainers, designated to prepare them to teach lessons on energy efficient rehabilitation of panel buildings.
7. Skills gaps between the current situation and the needs for 2020

7.1. Labour force evolution

As indicated above, according to NSI data the construction industry employs approximately 7% of the total number of employed persons in the country and in this way the building sector stands out as the biggest industrial employer.

![Employment in Construction 2002-2010](image)

Fig. 14 (Fig. 3). Employment in construction. Source: NSI

These figures are somewhat different from the data of the Central Professional Registry of Builders with the Bulgarian Construction Chamber, but still in the same range. According to the Chamber, the registered companies cover about 92% of the volume of construction works and employ 85% of the total number of employees in the sector. The majority of the registered companies are small and medium-size companies.

The trend in the number of employees in the building sector both as an independent value and as compared to the total number of employed persons in the national economy during the period 2000-2010 is significantly declining. The migration of the Bulgarian population from villages to towns (caused by the economical growth until 2008), was the main reason for the rapid growth of multi-family houses, office and retail buildings. The flooded market nowadays will lead to reduction of build rates in these sectors. The growth of the construction sector in Bulgaria depends mostly on the economic situation in the EU. The expectations are for increased build rates only for detached houses, semi-detached houses and luxury residential buildings, mainly built around the big Bulgarian cities. Construction of new retail buildings will either stay on the same level or will slightly grow, which is directly related to the expected dynamics of the building workforce until 2020.
These expectations are confirmed by the latest prognoses by CEDEFOP, which show that no significant growth of employment is expected either for Bulgaria or for EU 27+ in general:
According to the Bulgarian Construction Chamber the relative share of construction companies operating in the non-formal economy has reached the level of 15-20% for a 10-year period.

For the first nine months of 2011 the average number of persons on payroll employed on the basis of labour contracts was 131,000 people, which represents a reduction by 11.5% as compared to the same period in 2010.

According to the Bulgarian Construction Chamber the number of the unemployed in the building sector is above 100,000 people. According to the NSI the number of the unemployed for the first half of the year is 59 thousand. Unemployment in the building sector bears the marks and seasonal nature typical for the sector. The economic crisis has to a certain extent screened the positive and negative characteristics of the sector.

The distribution of the employed persons by labour contract and position arrangements in the building sector as per the classes of occupied positions according to the National Classification of Professions and Positions and subsectors according to Classification of Economic Activities 2008 for 2010 is illustrated in the table below.

Distribution of the employed persons by labour contract and position arrangements in the building sector as per the classes of occupied positions according to the National Classification of Professions and Positions and subsectors according to Classification of Economic Activities 2008 for 2010
Legend: Qualification structure of persons employed under labour contract and position arrangement as per the classes of occupied positions:

1 – President, legislators, senior civil servants and managers
2 – Experts in analytical studies
3 – Technicians and experts in other applied sciences
4 – Administrative staff
5 – Personnel employed in provision of services to the population, trade and security
6 – Skilled workers in agriculture, forestry, fishery and hunting sectors
7 – Skilled industrial workers and craftsmen in similar trades
8 – Operators of machines and equipment and installers
9 – Professions not requiring specific qualification

<table>
<thead>
<tr>
<th>Subsectors of CEA 2008 / National Classification of Professions and Positions classes</th>
<th>Number of employed persons by classes of the National Classification of Professions and Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 National total</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>122</td>
</tr>
<tr>
<td>F Construction</td>
<td>9 547</td>
</tr>
<tr>
<td>41. Construction of buildings</td>
<td>3 948</td>
</tr>
<tr>
<td>41.1 Activities for implementation of investment projects for buildings</td>
<td>161</td>
</tr>
<tr>
<td>41.2 Construction of residential and non-residential buildings</td>
<td>3 787</td>
</tr>
<tr>
<td>42. Construction of facilities</td>
<td>2 979</td>
</tr>
<tr>
<td>42.1 Construction of roads, incl. railroads</td>
<td>1 365</td>
</tr>
<tr>
<td>42.2 Construction of transmission and distribution lines and networks</td>
<td>768</td>
</tr>
<tr>
<td>42.9 Construction of other facilities</td>
<td>846</td>
</tr>
<tr>
<td>43. Specialized building activities</td>
<td>2 620</td>
</tr>
<tr>
<td>43.1 Clearing and preparation of construction site</td>
<td>213</td>
</tr>
<tr>
<td>43.2 Construction of installations</td>
<td>1 091</td>
</tr>
</tbody>
</table>
Table 16. Distribution of the employed persons by labour contract and position in the building sector by classes of the National Classification of Professions and Positions for 2010

The data about employment trends in the building sector is graphically presented in the following figure, including the information about the number of employed persons, the added value per worker and the investments per employee:

Fig. 18. Data about the employment in the building sector. Source: NSI and the Bulgarian National Bank

In connection with the total employment in the sector the table below presents the changes in employment by age groups in the building sector for the period 2008-2010.

<table>
<thead>
<tr>
<th>Subsectors of CEA 2008 / National Classification of Professions and Positions classes</th>
<th>Number of employed persons by classes of the National Classification of Professions and Positions</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.3 Finishing construction activities</td>
<td></td>
<td>574</td>
<td>392</td>
<td>708</td>
<td>951</td>
<td>634</td>
<td>49</td>
<td>2458</td>
<td>817</td>
<td>4882</td>
<td>11465</td>
</tr>
<tr>
<td>43.9 Miscellaneous specialized construction activities</td>
<td></td>
<td>742</td>
<td>735</td>
<td>745</td>
<td>880</td>
<td>347</td>
<td>69</td>
<td>2979</td>
<td>1795</td>
<td>3227</td>
<td>11519</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15-24 years of age</th>
<th>25-34 years of age</th>
<th>35-44 years of age</th>
<th>45-54 years of age</th>
<th>55-64 years of age</th>
<th>Above 65 years of age</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employed persons 2008 thousand people</td>
<td>32.1</td>
<td>80.3</td>
<td>95.7</td>
<td>86.1</td>
<td>46.1</td>
<td>340.3</td>
<td>32.1</td>
</tr>
<tr>
<td>% of the total number</td>
<td>12.2 %</td>
<td>10.9 %</td>
<td>9.9 %</td>
<td>9.7 %</td>
<td>9.1 %</td>
<td>10.1 %</td>
<td>12.2 %</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Number of employed persons 2009 r. (thousand people)</td>
<td>29.0</td>
<td>78.1</td>
<td>93.3</td>
<td>79.3</td>
<td>42.7</td>
<td>322.5</td>
<td>29.0</td>
</tr>
<tr>
<td>% of the total number</td>
<td>12.1 %</td>
<td>11.3 %</td>
<td>9.7 %</td>
<td>9.3 %</td>
<td>8.5 %</td>
<td>9.9 %</td>
<td>12.1 %</td>
</tr>
<tr>
<td>Number of employed persons 2010 r. (thousand people)</td>
<td>20.9</td>
<td>64.6</td>
<td>80.0</td>
<td>67.3</td>
<td>35.7</td>
<td>268.5</td>
<td>20.9</td>
</tr>
<tr>
<td>% of the total number</td>
<td>10.1 %</td>
<td>10.4 %</td>
<td>8.5 %</td>
<td>8.2 %</td>
<td>7.7 %</td>
<td>8.8 %</td>
<td>10.1 %</td>
</tr>
</tbody>
</table>

2. Derivative indicators

2.1. Change in the number of employed persons: 2009 as compared to 2008 (thousand people)

| Share of the total reduction, % | 13.7 % | 4.8 % | 342.9 % | 22.1 % | 50.0 % | 16.6 % | 13.7 % |

2.2. Change in the number of employed persons: 2010 as compared to 2009 (thousand people)

| Share of the total reduction, % | 24.8 % | 19.1 % | 46.7 % | 37.9 % | 18.8 % | 26.9 % | 24.8 % |

2.3. Change in the number of employed persons: 2010 as compared to 2008 (thousand people)

| Share of the total reduction, % | 20.3 % | 13.4 % | 53.8 % | 30.1 % | 23.6 % | 23.3 % | 20.3 % |

2.4. Percentage reduction of the number of employed persons during 2010 as compared to 2008, %

| Share of the total reduction, % | -34.9 % | -19.6 % | -16.4 % | -21.8 % | -22.6 % | -21.1 % | -34.9 % |

Table 17. Change in the employment by age groups in the building sector during the period 2008-2010

Bulgaria has the highest percentage of young people, who are simultaneously unemployed, have no education and do not get training for obtaining qualification. Bulgarians between 15 and 24 years of age corresponding to that profile account for 21.8% of the total.
Training in the framework of national education system

The number of pupils, who have acquired professional qualification 2nd Level in professions from the construction sector in 2010 is 906 (total for all professions 14 834). As compared to 2000 a total of 1278 individuals have acquired Professional Qualification Certificate in professions 2nd Level in the field of construction (according to NSI data). The difference is due to a large extent to the changes in the educational requirements and in a medium-term horizon it is expected that the 2010 figures will be retained.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary school graduates</td>
<td>18198</td>
<td>15595</td>
<td>4121</td>
<td>13355</td>
<td>13738</td>
<td>12826</td>
<td>10792</td>
<td>9841</td>
<td>7981</td>
<td>7677</td>
<td>7498</td>
</tr>
<tr>
<td>Persons, who have acquired professional qualification – total</td>
<td>18198</td>
<td>15595</td>
<td>4121</td>
<td>29781</td>
<td>23119</td>
<td>21639</td>
<td>20031</td>
<td>18819</td>
<td>15532</td>
<td>16816</td>
<td>14834</td>
</tr>
<tr>
<td>Architecture and civil engineering</td>
<td>1278</td>
<td>1079</td>
<td>431</td>
<td>1845</td>
<td>1247</td>
<td>1171</td>
<td>1011</td>
<td>944</td>
<td>815</td>
<td>1060</td>
<td>906</td>
</tr>
</tbody>
</table>

Table 18. Number of pupils acquired 2nd professional qualification level

The number of pupils, who have acquired professional qualification 3rd Level in professions from the construction sector in 2010 is 641 (total for all professions 9366), which is less than the number of graduates in the year 2000, when 1680 individuals had acquired Professional Qualification Certificate in professions 3rd Level in the field of construction (according to NSI data). The difference is again due to a large extent to the same reason and no significant change of the 2010 figures is expected by 2020.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary school graduates</td>
<td>28439</td>
<td>27871</td>
<td>29533</td>
<td>30956</td>
<td>30511</td>
<td>29793</td>
<td>29506</td>
<td>29659</td>
<td>25525</td>
<td>25772</td>
<td>23064</td>
</tr>
<tr>
<td>Persons, who have acquired professional qualification – total</td>
<td>28439</td>
<td>27871</td>
<td>29533</td>
<td>1637</td>
<td>11134</td>
<td>10628</td>
<td>10514</td>
<td>10409</td>
<td>8410</td>
<td>8332</td>
<td>9366</td>
</tr>
<tr>
<td>Architecture and civil engineering</td>
<td>1680</td>
<td>1227</td>
<td>1322</td>
<td>20</td>
<td>870</td>
<td>804</td>
<td>888</td>
<td>868</td>
<td>788</td>
<td>479</td>
<td>641</td>
</tr>
</tbody>
</table>

Table 19. Number of pupils acquired 3rd professional qualification level

A trend of diminishing of the number of persons taking training or graduating in professions from the building sector (especially professions of low-level professional qualification – 1st and 2nd) has been observed.

In 2010, the following numbers of workers have completed courses in the vocational training centers in the professions, which are the object of this analysis:

Number of trainees in the vocational training centres
Professional direction “Electrical engineering and energy sector”

![Bar chart showing number of trainees in vocational training centres in 2010 by professions:](chart)

Fig. 19. Number of trainees in the vocational training centres in 2010, professional direction “Electrical engineering and energy sector”.

Professional direction “Construction”

![Bar chart showing number of trainees in vocational training centres in 2010:](chart)

Fig. 20. Number of trainees in the vocational training centres in 2010, professional direction “Construction”.
From the information above, it is evident that in 2010 in the training programmes were not included crafts directly related to servicing of energy efficiency and/or retrofitting. There are very few trainings for specialists on RE systems conducted which turns out to represent a major gap between the existing skills of the workforce and the needs for 2020 (see below).

7.2. New emerging skills

The newly emerging skills, connected with the improvement and upgrading of the qualification of the building workforce, may hardly be forecasted in a medium-term horizon, since they are directly dependent of the technology developments and market trends. Even if no dramatic new changes of building technology are expected,
the low level of introduction of existing ones - especially in the area of RE systems - and the under-developed market, make all predictions highly uncertain. It can be however stated with a certain degree of reliability that the knowledge related to application of innovative energy efficient solutions, as well as the decisions related to integration of RES in buildings, are not adequately addressed in the national educational system. On the contrary, the small number of exceptions, which are often result of individual initiatives of certain institutions in the vocational training and education system, have proven through their success the existence of emerging and already assessed market demand.

On the basis of the performed analyses of existing studies and surveys the following newly emerging solutions, requiring additional qualification of craftsmen working in the different subject fields and/or upgrading of their skills have been identified:

- High insulation standard (< 0.18 W/m²K);
- Balanced ventilation with heat recovery (>80 %);
- Triple glazing;
- PV (rooftop and facade);
- Biomass CHP or trigeneration;
- Solar cooling systems;
- Water/water heat pumps;
- Brine/water heat pumps;
- Automatic lighting controls;
- Automatic controlled external shading.
- Work with inventory shuttering and built-in thermal insulations;
- Water-based floor heating;
- Methods of fastening of thermal insulation package and steam insulation;
- Installation of window frames: connection window-thermal insulation; fitting of indoor and outdoor window sills.

The expectations concerning the increase of the number of needed craftsmen are preconditioned by the level of penetration of the identified solutions in the building practice. The assessments are based on the existing statistical data and expert opinions and have been derived from a study by the EnEffect Consult, conducted at the order of BPIE for the purpose of formulation of the performance of buildings with near zero energy consumption in compliance with the requirements of the EU Directive on Energy Performance of Buildings. The forecast values are presented in the table below.

<table>
<thead>
<tr>
<th>Renewable energy perspectives (estimation of market growth) in Bulgaria</th>
<th>Actual share of new built</th>
<th>2020</th>
<th>2030</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar thermal for DHW</td>
<td>Most realistic case</td>
<td>about 5%</td>
<td>15%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Best case</td>
<td>about 5%</td>
<td>40%</td>
<td>100%</td>
</tr>
<tr>
<td>PV (rooftop and facade)</td>
<td>Most realistic case</td>
<td>about 0%</td>
<td>5-10%</td>
<td>20%</td>
</tr>
<tr>
<td>Best case</td>
<td>about 0%</td>
<td>40%</td>
<td>100%</td>
<td>If a proper law is passed</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Solar cooling systems</td>
<td>Most realistic case</td>
<td>0%</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>Best case</td>
<td>0%</td>
<td>10%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Brine/water heat pumps</td>
<td>Most realistic case</td>
<td>less than 1%</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>Best case</td>
<td>less than 1%</td>
<td>8%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Water/water heat pumps</td>
<td>Most realistic case</td>
<td>less than 1%</td>
<td>2%</td>
<td>6%</td>
</tr>
<tr>
<td>Best case</td>
<td>less than 1%</td>
<td>10%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Air/water heat pumps</td>
<td>Most realistic case</td>
<td>3 - 4%</td>
<td>8%</td>
<td>15%</td>
</tr>
<tr>
<td>Best case</td>
<td>3 - 4%</td>
<td>15%</td>
<td>25%</td>
<td>Mostly for cooling</td>
</tr>
<tr>
<td>Pellet boiler</td>
<td>Most realistic case</td>
<td>5 - 6%</td>
<td>8%</td>
<td>12%</td>
</tr>
<tr>
<td>Best case</td>
<td>5 - 6%</td>
<td>20%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Other biomass boiler (please specify)</td>
<td>Most realistic case</td>
<td>30 - 40%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>Best case</td>
<td>30 - 40%</td>
<td>45%</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Biomass CHP or trigeneration (please specify)</td>
<td>Most realistic case</td>
<td>0%</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>Best case</td>
<td>0%</td>
<td>5%</td>
<td>15%</td>
<td></td>
</tr>
</tbody>
</table>

Table 20. Renewable energy perspectives (estimation of market growth) in Bulgaria

| Energy efficiency measures perspectives (estimation of market growth) in Bulgaria |
|----------------------------------|-------------------------------|--------|--------|------------------|
| Actual share of new built | 2020 | 2030 | Comment |
| Triple glazing | Most realistic case | less than 1% | 15% | 30% |
| Best case | less than 1% | 100% | 100% | If a proper law is issued |
| Balanced ventilation with heat recovery (>80 %) | Most realistic case | about 0% | 5% | 15% |
| Best case | about 0% | 10% | 40% |
| High insulation standard (< 0,18 W/m²K) | Most realistic case | less than 1% | 20% | 50% |
| Best case | less than 1% | 40% | 100% | If a proper law is issued |
| CHP / Trigeneration | Most realistic case | 0% | 5% | 10% |
| Best case | 0% | 10% | 20% |
In addition, the results from the performed empirical studies and surveys indicate that to date there is demand for additional craftsmen for implementation of the following solutions, which cannot be assumed as newly emerging, but are of decisive significance for the application of measures in the field of energy efficiency and renewable energy sources:

- Air/water heat pumps
- Pellet boiler
- LED Lighting
- Gas-fired boiler
- Oil-fired boiler
- Solid-fuel-fired furnace

Regarding the skills level, problems have been identified in the following fields and possible building solutions:

- Gas-fired boiler
- Oil-fired boiler
- Solid-fuel-fired furnace
- Floor heating systems
- Cooling/Air-conditioning systems

In compliance with the expectations concerning the dynamics of the workforce no clearly manifested shortage of craftsmen in the traditional professional activities has been noted (concrete-worker, reinforcement-worker, mason; carpenter, plumber, electrician, roofer, window frames installer, thermal insulation installer, water-proofing installer, shuttering-worker). The distribution of responses with respect to the qualification of the existing workforce is even and does not presume conclusions about low quality of the performed building operations. These data are corroborated also by the respondents' evaluation of the quality of implementation of the main building components (foundations, walls, roof, windows, doors, chimneys, heating/cooling systems, ventilation, lighting, thermal insulations, water-proofing). What impresses in this control list is the low level of categorically unsatisfied with the work done customers, which is in the range between 0% and 21%. However, due to the low level of introduction of low-energy building in Bulgaria, it is proposed that all
workers should undergo short trainings on the basic principles of energy efficiency, preferably on the workplace.

The picture obtained from the study of the supply of craftsmen in the field of installation and maintenance of the major systems for renewable energy in buildings and the qualification level of the installers is quite different. As evident from the diagrams below, there is a clearly manifested shortage of installers for each of the investigated systems (small boilers, photovoltaic and solar heat systems, geothermal systems and heat pumps, mini wind turbines).
Fig. 22. Supply of craftsmen for installation and maintenance of systems for renewable energy in buildings.

The data about the qualification level of the existing workforce are similar, whereat in the predominant number of cases the respondents give unsatisfactory evaluation of the qualification and respectively the quality of the offered services.
Need of new/additional qualification

As already mentioned above, learning of new skills, necessary for implementation of energy efficiency measures in the construction and operation of buildings, is projected at several levels:

- Existence in the List of professions for VET of specific professions, related to the implementation of measures for energy efficiency improvement and the use of renewable energy in buildings;
- Incorporation in the State Educational Requirements by professions of new knowledge, skills and competences, related to the energy efficiency measures;
- Changes in the training plans and programmes – for schools with permit from the Ministry of Education, Youth and Science and for the vocational training centres at the initiative of the centres proper;
- Adding of new themes in the educational process, which are not clearly mentioned in the training programmes, in the framework of the process of planning of the training in the respective subject in the annual distribution of classes or the respective course in the vocational training centres.

To date no proposals for changes in the State Educational Requirements or the training plans and programmes have been submitted.

It is not reckoned necessary to introduce new specific professions related to implementation of measures for energy efficiency improvement and the use of renewable energy in buildings. On the other hand, it may be sustained with a high degree of confidence that changes are necessary in the other three levels – incorporation of new knowledge in the State Educational Requirements by professions, changes in the training plans and programmes and adding new themes for the existing workforce.
in the educational process. There is a clearly manifested need of new craftsmen in the professions “Technician in energy equipment and systems – RES” (5220308 – 3rd Level of professional qualification) and “Installer of energy equipment and systems – RES” (5220408 – 2nd Level of professional qualification), but as early as here it should be noted that the high-quality implementation of renewable energy in buildings is the responsibility of specialists from other directions as well, who should also acquire elementary knowledge in that field. It can be assumed with a certain degree of conventionality, that the need of additional qualification in that field, forecast for the specialists from the two professions quoted above, is valid also for the other related professions (marked in the analysis below). Since increase of the number of craftsmen in neither of these professions has been reported, the emphasis is laid on the need of changes in the training plans and programmes and the addition of new themes in the process of education.

According to the conducted study introduction of new training programmes and/or upgrading of the currently used ones is necessary as a matter of priority in the following directions:

- High insulation standard (< 0.18 W/m²K);
- Balanced ventilation with heat recovery (>80 %);
- Triple glazing;
- Biomass CHP or trigeneration;
- Automatic lighting controls;
- Automatic controlled external shading;
- Solar thermal for DHW, Solar cooling systems Brine/water heat pumps, Water/water heat pumps, Air/water heat pumps
- Pellet boiler;
- Balanced ventilation with heat recovery (>80 %);
- LED Lighting; Automatic lighting controls;
- Gas boiler, oil boiler;
- Air handling units and filters;
- Cooling/air conditioning systems;
- Radiators;
- Air handling units and filters;
- Underfloor heating system;
- Window installers.

At this point it should be noted that the need of permanent optimization of the training and educational programmes is valid for all the investigated professional groups. In this specific case the emphasis is laid on clearly manifested dependencies identified in the course of the analysis of the available documents, the results from the conducted survey and the qualitative research methods.

7.3. Qualification needs

As already mentioned, it can be stated with a high degree of confidence that the knowledge in implementation of innovative solutions for energy efficiency improvement and integration of renewable energy in buildings is not adequately covered in the vocational training and education system. One cannot fail to note the absence of proposals for changes in the State Educational Requirements or the
training plans and programmes, especially in comparison with the identified need of additional qualification and re-training of the specialists, above all in the field of application of RES in buildings. From the conducted quality studies, based on semi-structured interviews, one gets clearly to the conclusion that making changes to the training plans and programmes and adding new themes in the practice is actually a “bottom-up” process, quite often the result of individual initiatives or specific projects, funded mainly through programmes of the European Commission.

In this sense, it is often stated that training plans and programmes are a conservative matter, since they are prepared according to a planning period of not less than 5 years and seldom meet the actual trends. The paths for updating of the teaching content are presumed to be bound to the initiative of teachers/trainers, who are entitled to introduce new content in the framework of the programme (including in the course of classes for freely chosen study subjects), specialized seminars and workshops with the participation of external experts (companies and branch associations) and in project-based initiatives. These practices are assessed as being very successful taking due account of the significant interest on the part of the pupils in the vocational high schools and the real improvement of the quality of education through practical classes.

The identified needs of building new capacities or upgrading of the existing knowledge and skills are distributed according to the existing qualification framework as follows:

1. **Electrician – Electrical wiring systems** - 5220109 (3rd Level of professional qualification)
2. **Electrician-installer – Electrical wiring systems** – 5220210 (2nd Level of professional qualification)
3. **Electrician-installer – Power engineering** - 5220212 (2nd Level of professional qualification)

Need of additional workforce has not been reported.

Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Related employment data</th>
<th>43.2: Construction of installations:</th>
<th>41.2: Construction of residential and non-residential buildings, Class 3:</th>
<th>41.2: Construction of residential and non-residential buildings, Class 7:</th>
<th>41.2: Construction of residential and non-residential buildings, Class 8:</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(number of employed persons for 2010)</td>
<td>16 012</td>
<td>4 865</td>
<td>20 304</td>
<td>5 621</td>
<td>46802</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professions 1-3</th>
<th>Estimation for quoted professions: appr. 30%</th>
<th>Estimation for quoted professions: appr. 30%</th>
<th>Estimation for quoted professions: appr. 20%</th>
<th>Estimation for quoted professions: appr. 15%</th>
<th>Estimation of the total number of employed persons in quoted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Need of introduction of additional qualification modules has been reported in the following directions:

- PV (rooftop and facade); Solar cooling systems (~40% more qualified specialists);
- Brine/water heat pumps; Water/water heat pumps; Air/water heat pumps (10-15%)
- Pellet boiler (20%);
- Biomass CHP or trigeneration (5%);
- Balanced ventilation with heat recovery (>80 %) (15%);
- LED Lighting; Automatic lighting controls (20-25%);

4. Technician in energy equipment and systems – RES - 5220308 (3rd Level of professional qualification)
5. Installer of energy equipment and systems – RES - 5220408 (2nd Level of professional qualification)

Acute need of additional trained workforce has been constantly reported. Until recently, there were no qualified specialists in this area. It is virtually impossible to give accurate estimation of the number of specialists actually involved with installations of RES equipment and systems as this activity has been overtaken by other specialists in practice - mainly electricians and thermal engineering technicians. However, the need for further training has been recognized for all related specialties and duly reported. The positive sign is that with the recent changes in the Law on RES, all companies offering such products and/or services are obliged to hire a certified expert (in compliance with the enforced registration regime with the State Agency for Metrological and Technical supervision of the companies active in installation, servicing and maintenance of RES systems). This legally created market niche has visibly enhanced training activities in the area; however, precise data about the employment rate of such specialists is still not available.

With a view to the forecast norm for penetration of systems for integration of renewable energy in buildings in the optimistic scenario and the identified shortage of certified specialists, the need of increase of the number of workers is estimated as follows: ~40% in the direction photovoltaic and solar thermal systems; 10-15% in the direction geothermal systems and heat pumps; 15-20% in the direction small biomass-fired boilers. Despite the identified need of specialists for installation of mini wind turbines it is not possible to forecast the need of new workers, since the extent of penetration of that technology in the country is negligible and there are no reliable forecasts concerning the expected growth in the building practice.
Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Related employment data (number of employed persons for 2010)</th>
<th>43.2: Construction of installations: 16 012</th>
<th>41.2: Construction of residential and non-residential buildings, Class 3: 4 865</th>
<th>41.2: Construction of residential and non-residential buildings, Class 7: 20 304</th>
<th>Total: 46802</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professions 4-5</td>
<td>Estimation for quoted professions: appr. 5%</td>
<td>Estimation for quoted professions: appr. 2%</td>
<td>Estimation for quoted professions: appr. 1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>801</td>
<td>97</td>
<td>203</td>
<td>1101</td>
</tr>
</tbody>
</table>

Table 23. Expert estimation of current workforce for professions: Technician in energy equipment and systems – RES – 5220308; Installer of energy equipment and systems – RES - 5220408

Need of introduction of additional qualification modules and additional training has been reported in the following directions:

- **Solar thermal for DHW, PV (rooftop and facade), Solar cooling systems (~40% more qualified specialists);**
- **Brine/water heat pumps, Water/water heat pumps, Air/water heat pumps (10-15%);**
- **Pellet boiler (20%);**
- **Biomass CHP or trigeneration (5%);**
- **Balanced ventilation with heat recovery (>80%) (15%).**

6. **Technician in energy equipment and systems – Thermal engineering - 5220309 (3rd Level of professional qualification)**

7. **Installer of energy equipment and systems – Thermal engineering - 5220409 (2nd Level of professional qualification)**

Need of additional specialists: not reported

Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Related employment data (number of employed persons for</th>
<th>43.2: Construction of installations: 16 012</th>
<th>41.2: Construction of residential and non-residential buildings,</th>
<th>41.2: Construction of residential and non-residential buildings,</th>
<th>41.2: Construction of residential and non-residential buildings,</th>
<th>Total: 46802</th>
</tr>
</thead>
</table>

Need of introduction of additional qualification modules has been reported in the following directions:

- Solar thermal for DHW, Solar cooling systems (~40% more qualified specialists);
- Brine/water heat pumps, Water/water heat pumps, Air/water heat pumps (10-15%);
- Pellet boiler (20%);
- Biomass CHP or trigeneration (5%);
- Balanced ventilation with heat recovery (>80%) (15%);

Need for further qualification and re-training has been reported in the following directions:

- Gas boiler, oil boiler (identified need of up to 60% better qualified specialists)
- Air handling units and filters (identified need of up to 47% better qualified specialists)
- Cooling/air conditioning systems (identified need of up to 62% better qualified specialists)
- Radiators (identified need of up to 30% better qualified specialists)

8. Construction – Civil engineering technician – Civil engineering and architecture – 5820101 (3rd Level of professional qualification)

Need of additional specialists: not reported.

Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Professions 6-7</th>
<th>Estimation for quoted professions: appr. 30%</th>
<th>Estimation for quoted professions: appr. 30%</th>
<th>Estimation for quoted professions: appr. 15%</th>
<th>Estimation for quoted professions: appr. 10%</th>
<th>Estimation of the total number of employed persons in quoted professions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4803</td>
<td>1460</td>
<td>3046</td>
<td>562</td>
<td>9871</td>
<td></td>
</tr>
</tbody>
</table>

Related employment data (number of employed)

<table>
<thead>
<tr>
<th>43.2: Construction of installations:</th>
<th>41.2: Construction of residential and non-residential</th>
<th>41.2: Construction of residential and non-residential</th>
<th>41.2: Construction of residential and non-residential</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 012</td>
<td></td>
<td></td>
<td></td>
<td>44968</td>
</tr>
</tbody>
</table>
Table 25. Expert estimation of current workforce for profession: Civil engineering and architecture - 5820101

Need of introduction of additional qualification modules has been reported in the following directions:

Solar thermal for DHW, Solar cooling systems (~40% more qualified specialists);
Brine/water heat pumps, Water/water heat pumps, Air/water heat pumps (10-15%);
Pellet boiler (20%);
Biomass CHP or trigeneration (5%);
Balanced ventilation with heat recovery (>80 %) (15%);
High insulation standard (< 0,18 W/m²K) (~40%);
Automatic controlled external shading (10%);

Need for further qualification and re-training has been reported in the following directions:
Gas boiler, oil boiler (identified need of up to 60% better qualified specialists)
Air handling units and filters (identified need of up to 47% better qualified specialists)
Cooling/air conditioning systems (identified need of up to 62% better qualified specialists)

9. **Construction – Civil engineering technician – Hydro-engineering - 5820103 (3rd Level of professional qualification)**

Need of additional specialists: not reported.
Approximate estimation of current workforce:
Related employment data (number of employed persons for 2010)

<table>
<thead>
<tr>
<th>Description</th>
<th>43.2: Construction of installations: 16 012</th>
<th>41.2: Construction of residential and non-residential buildings, Class 1: 3 787</th>
<th>41.2: Construction of residential and non-residential buildings, Class 3: 4 865</th>
<th>41.2: Construction of residential and non-residential buildings, Class 7: 20 304</th>
<th>Total: 44 968</th>
</tr>
</thead>
</table>

Profession 9

<table>
<thead>
<tr>
<th>Profession 9</th>
<th>Estimation for quoted professions: appr. 15%</th>
<th>Estimation for quoted professions: appr. 10%</th>
<th>Estimation for quoted professions: appr. 10%</th>
<th>Estimation for quoted professions: appr. 5%</th>
<th>Estimation of the total number of employed persons in quoted professions:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2402</td>
<td>379</td>
<td>487</td>
<td>1015</td>
<td>4283</td>
</tr>
</tbody>
</table>

Table 26. Expert estimation of current workforce for profession: Construction – Civil engineering technician – Hydro-engineering - 5820103

Need of introduction of additional qualification modules has been reported in the following directions:

Water/water heat pumps; Brine/water heat pumps (10-15%).

Profession 10

<table>
<thead>
<tr>
<th>Profession 10</th>
<th>Estimation for quoted professions: appr. 20%</th>
<th>Estimation for quoted professions: appr. 10%</th>
<th>Estimation for quoted professions: appr. 10%</th>
<th>Estimation of the total number of employed persons in quoted professions:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2293</td>
<td>2030</td>
<td>843</td>
<td>5166</td>
</tr>
</tbody>
</table>

Table 27. Expert estimation of current workforce for profession: Construction – Builder – Indoor sheathings and surfaces - 5820306

20 Level of professional qualification**

Need of additional specialists: not reported.

Approximate estimation of current workforce:
Need of introduction of additional qualification modules has been reported in the following directions:

Balanced ventilation with heat recovery (>80 %) (15%);

Need for further qualification and re-training has been reported in the following directions:

Underfloor heating system (identified need of up to 55% better qualified specialists)

Cooling /air conditioning systems (identified need of up to 62% better qualified specialists)

11. Construction – Builder – Outdoor sheathings and surfaces - 5820307 (2nd Level of professional qualification)

Need of additional specialists: not reported.

Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Related employment data (number of employed persons for 2010)</th>
<th>43.3: Finishing construction activities: 11,465</th>
<th>41.2: Construction of residential and non-residential buildings, Class 7: 20,304</th>
<th>41.2: Construction of residential and non-residential buildings, Class 8: 5,621</th>
<th>Total: 37,390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profession 11</td>
<td>Estimation for quoted professions: appr. 15%</td>
<td>Estimation for quoted professions: appr. 10%</td>
<td>Estimation for quoted professions: appr. 10%</td>
<td>Estimation of the total number of employed persons in quoted professions:</td>
</tr>
<tr>
<td></td>
<td>1720</td>
<td>2030</td>
<td>562</td>
<td>4312</td>
</tr>
</tbody>
</table>

Table 28. Expert estimation of current workforce for profession: Construction – Builder – Outdoor sheathings and surfaces - 5820307

Need of introduction of additional qualification modules has been reported in the following directions:

High insulation standard (< 0,18 W/m²K) (~40% more qualified specialists).

12. Construction – Builder – Roofing - 5820312 (2nd Level of professional qualification)

Need of additional specialists: not reported.

Approximate estimation of current workforce:

Need of introduction of additional qualification modules has been reported in the following directions:

- Solar thermal for DHW; PV (rooftop and facade); Solar cooling systems (~40% more qualified specialists);
- Air/water heat pumps (15%);
- High insulation standard (< 0.18 W/m²K); high quality hydro insulation (~40% more qualified specialists).

13. Construction – Builder – Assembler-installer – Window frames and glazing - 5820404 (2nd Level of professional qualification)

Need of additional specialists: not reported.

Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Related employment data (number of employed persons for 2010)</th>
<th>43.3: Finishing construction activities: 11 465</th>
<th>41.2: Construction of residential and non-residential buildings, Class 7: 20 304</th>
<th>41.2: Construction of residential and non-residential buildings, Class 8: 5 621</th>
<th>Total: 37390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profession 13</td>
<td>Estimation for quoted professions: appr. 20%</td>
<td>Estimation for quoted professions: appr. 10%</td>
<td>Estimation for quoted professions: appr. 15%</td>
<td>Estimation of the total number of employed persons in quoted professions:</td>
</tr>
<tr>
<td></td>
<td>2304</td>
<td>2030</td>
<td>843</td>
<td>5177</td>
</tr>
</tbody>
</table>

Need of introduction of additional qualification modules has been reported in the following directions:

Triple glazing (15% more qualified specialists (realistic case);

Automatic controlled external shading (10%).

Need for further qualification and re-training has been reported in the following directions:

Window installers (identified need of up to 69% better qualified specialists).

14. **Construction – Builder - Assembler–installer – Building insulations - 5820405 (2nd Level of professional qualification)**

Need of additional specialists: not reported.

Approximate estimation of current workforce:

<table>
<thead>
<tr>
<th>Related employment data (number of employed persons for 2010)</th>
<th>43.3: Finishing construction activities: 11 465</th>
<th>41.2: Construction of residential and non-residential buildings, Class 7: 20 304</th>
<th>41.2: Construction of residential and non-residential buildings, Class 8: 5 621</th>
<th>Total: 41181</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professions 14</td>
<td>Estimation for quoted professions: appr. 20%</td>
<td>Estimation for quoted professions: appr. 10%</td>
<td>Estimation for quoted professions: appr. 20%</td>
<td>Estimation of the total number of employed persons in quoted professions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2293</td>
<td>2030</td>
<td>1124</td>
<td>5447</td>
</tr>
</tbody>
</table>

Need of introduction of additional qualification modules has been reported in the following directions:

High insulation standard (< 0,18 W/m²K); hydro insulation (~40% more qualified specialists).
Despite the generally shared opinion that energy efficiency issues are not covered in the training practice and that there is no tradition in building workforce capacity building, one cannot fail to note the good example of the training courses for installers of small-capacity RES systems in buildings under the “Install+RES” project of the Sofia Vocational High School in Electronics “John Atanasov”. In the arrangements for training and education serious attention is paid to the national and common European norms for energy saving and energy efficiency measures, applicable at the national level with due respect of the declared priorities. The training course starts with a theme devoted to rational energy use (25 classes), review of the renewable energy sources used in all the sectors of the economy and simultaneously a summary review of the current strategic and legislative framework and the related by-laws. In co-operation with NGOs and the institutions of the executive authorities the most topical and reliable information is sought as much as possible.

Qualification of trainers

The opinion that there are not enough adequately qualified teachers/trainers is clearly gaining ground. Emergence of practices of self-training, which do not comply with the requirements for didactics and methodology in the educational system, has been observed. There is some hope of being able to train trainers in the framework of projects and a shared opinion is also that this is the sole working approach. The post-graduate qualification in the higher educational institutions is defined as a suitable modality, but the observation is that such practices are not common. The existing practices of company-based training limit the qualification to a specific product or equipment, which is justified but not applicable to the training of trainers.

The identified shortage of teachers/trainers is viewed as a grave problem, especially with a view to the high age structure (above 55 years of age) for the majority of those currently employed. It is recognized that there are no mechanisms and reference points, which might help assess the quantitative needs of trainers. In the practice it is usually relied on the personal initiative and the opportunities for career development and adaptation of the capacities to the needs. Of course, the major problem related to staffing is also pointed out, namely the low remuneration level. The crisis in the building sector is, to a certain extent, regulating this gap and in the recent two years penetration of young teachers has been observed. They are estimated to be the bearers of innovations in the teaching content, but nevertheless the general trend remains negative.

In this connection it is worth noting also the fact that the further qualification of the trainers in professional capacity building is not well regulated and there is no institution responsible for it (as different from the system of general education) and therefore building of an additional institutional capacity is necessary. The manner, in which the institutions of the system of general education manage to handle the problem, is again through seminars and workshops sponsored by companies, which regard themselves as carriers of innovations, as well as through trainings under the PHARE Programme and other EU programs. No resources have been envisaged except for the funding provided from the delegated budgets of the schools. The interaction among the educational institutions and the enhanced possibilities for co-operation are also viewed as a major instrument for optimization of the training practices.
The need of implementing a national policy and providing institutional support, including by the centres for post-graduate training (above all in the higher educational institutions) is recognized. Proposals have emerged to incorporate opportunities for re-training of engineers under the OP “Human Resources Development”. The estimate is that these are namely the people, who are able to introduce innovations and practical knowledge. It is relied upon penetration of leading technologies and the respective training practices with support from the EC programmes despite the existing barrier of inadequate material stock.

According to the conducted surveys the creation of a specialized structure, designated to assess the dynamics of demand in the building sector and guiding the adaptation of the educational and training institutions is regarded as an important step for maintaining the quality of professional qualification. It is hoped that the anticipated changes in the Law on Education and the Law on VET will ensure a basis for creation of such an institution\(^2\), in which business and the branch organizations will play a major role not only in the field of planning the number of craftsmen, but also in the working out of the training plans and programmes. The opportunities for co-financing and public-private partnerships are also discussed. A similar approach has already been used in the introduction of new subject fields, but that again was mainly at the initiative of the vocational high schools. Imposition of legislative requirements concerning certification of specialists is regarded as the basic manner in which improvement of the qualification of the employees in the sector can be achieved, whereat again there is a heavy emphasis on the responsibility of the companies and the control they should exercise on the quality of the additional qualification and the real application of the newly acquired knowledge in the practice.

In this connection, at the background of the identified need of an additional number of highly qualified specialists, a newly emerging and regulatory provided-for market niche takes shape, whereat according to the new legislation all the specialists, engaged in installation of RES systems, should be certified in compliance with the enforced registration regime with the State Agency for Metrological and Technical supervision of the companies active in installation, servicing and maintenance of RES systems. In this case again the control of employers is considered to be particularly important. This approach is optimistically regarded as the most suitable and the most beneficial vis-à-vis the existing possibilities.

In the educational practice the training programmes for special training are the product of individual initiative, quite often as a result of cooperation with EC programmes. This solution is, however, not sufficient to maintain a high level in a long-term aspect. Higher commitment on the part of the branch organizations and associations and of the representatives of business is needed, since they are those able to initiate change according to their requirements and needs. This approach of consultations and cooperation with the real sector has been used also in the development of the new training programmes during recent years, but the timeframe for the mandatory follow-up adaptation and optimization is estimated to be not more than two years. It is worth noting at this point that in all the work plans there emerges the issue of procurement of the minimum necessary equipment for the practical training sessions, which is assumed as being of key importance for the quality of the acquired qualification.

\(^2\) The need of quantitative analysis of the demand for teachers/trainers for the purposes of this study will be aligned to the methodology to be adopted at the national level.
From the conducted studies it is not possible to identify if there is any need of increasing the number of the educational structures. According to the views expressed by the respondents, the number of vocational high schools and vocational training centres is regulated naturally by the demand and the required subject fields in the system of education are estimated by the society. However, this can lead to regional problems with the supply of trained workers, so the preservation of the current number and deployment of professional high schools is a must. A possibility to seek partnerships between professional high schools and vocational training centres in terms of personnel and material stock is recognized, moreover that there are good examples in that respect.

It has been recognized that at the current information level people are motivated and there is evident demand for training in the subject field “Renewable energy sources”. A significant and leading interest has been identified for re-training of craftsmen, including building technicians, plumbers, specialists in automatics, electricians, roofers, with expressed wish to obtain professional certificates. Nevertheless, it is stated that the leading motif is the individual initiative and not the market demand. There exist also practices of co-operation with companies for training of trainers, which are estimated to have been useful and to mutual benefit.

7.4. Monitoring needs

The estimates about the needs of monitoring of the gaps and disparities between the demand of qualified workforce in the building sector and the supply by the national system for VET in this study are based on an analysis of the existing strategic documents and plans and the conducted qualitative study. Although closely related to the subject concerning the need of improvement of the quality of vocational education and further qualification of the trainers, this problem is clearly recognized and real ideas and actions for its resolution emerge. At this stage, however, one may hardly say that there is a unified position and joint action front on the part of the stakeholder groups.

As already mentioned, the creation of a specialized structure aimed at assessing the dynamics of demand in the building sector and directing the efforts of the educational and training institutions in the necessary direction is regarded as an important step for maintaining the quality of professional qualification. The possible actions have been reviewed in two main directions, whereat the leadership in this field is associated on one hand with the branch organizations and associations and, on the other hand, with the bodies of the executive authorities. Although the opinions that it is namely business and its organizations that should bear the responsibility for ensuring feedback to the educational institutions, there has been not a single case in which the possibility for creating a specialized structure in the framework of the Ministry of Education, Youth and Science of NAVET has been denounced. Some respondents even insist on actions of that type. Once again, successful practices of co-financing and public-private partnerships, which can support the efforts in this direction, come to the fore. A similar approach has already been made use of in the introduction of two new professional lines – “Real estate broker” and “Renewable energy sources”, whereat in the process of developing of the proposals for new training plans and programmes position papers were enclosed and interviews with the stakeholder groups and professional associations were conducted. Despite the positive evaluation of these initiatives this solution turned out to be insufficient for maintaining the training programmes at a high level in a long-term aspect and hence the opinion is that there is an evident necessity of systematization of the efforts.
It is presumed that the expected changes in the Law on Education and the Law on VET will ensure a base for setting in place of such a structure, which would systematize and unite the efforts of the bodies of the executive authorities, the educational and training institutions and the branch organizations and representatives of business in the planning of the number of the necessary specialists, as well as in the elaboration, adaptation and optimization of the training plans and programmes. The timeframe indicated to date is not more than two years for updating of the teaching content, which, of course, is predetermined by the high pace of development of new technologies. In all the conducted interviews the major role of the EC programmes and of cooperation with leading European institutions for improvement of the quality of the training programmes for vocational training and their topicality has been emphasized many a time.

Unfortunately, to date there is no fundamental strategic document at the national level, committed specifically to the policies in the field of vocational education and further professional training (like the National strategy for further professional training for the period 2005-2010). The concrete activities, which are expected to be realized in the system for VET, are laid down in the Objectives of the Administration of the Ministry of Education, Youth and Science for 2012 and the Action Plan for 2012-2013 in implementation of the National Strategy for Lifelong Education (2008-2013). A detailed review of the quoted documents will reveal that the first steps of monitoring of the inadequacy between the demand for qualified specialists and the supply in the national system have already been made (or are pending to be made in a short-term horizon).

According to the Action Plan for 2012-2013 and in implementation of the National Strategy for Lifelong Education (2008-2013) undertaking of the below listed measures in direct connection with the monitoring system is forthcoming:

- Preparation of proposals for changes in the regulatory framework aimed at improvement of the employers’, employees’ and state institutions’ awareness; worked out policies for regulatory promotion of lifelong learning and career development as a major components of the so-called “flexible safety”; application and recognition of the results from the information system for evaluation of competences at the national level and creation of prerequisites for integration in the so-called “electronic government” and raising the awareness of employers, employees and state institutions;
- Preparation of basic analyses and studies related to the current state and trends on the labour market and the workforce; skills, qualification and competences of the employees and the workforce by branches and regions; evaluation of the competences of the workforce;
- Analyses of the activities of the licensed vocational training centres and licensed centres for information and professional orientation during 2011 an 2012;
- Analysis of the impact of the application of the system for career development of teachers;
- Statistical studies: professional training in the vocational training centres and the vocational high schools and colleges (of trainees aged 16 and above);
- Analysis of the results from the statistical study on the subject “Further professional training in enterprises”;

And, subject to particular emphasis:
• Creation of a system for study and forecasting of the needs of workforce possessing specific skills;
• Introduction of a programme for training and qualification of specialists in the energy sector, new technologies and energy management.

More specifically, the envisaged measures in the field of vocational training in the context of lifelong education are as follows:

• Creation of prerequisites for introduction of European instruments and practices in the system for VET:
 o Working out methodology for upgrading, more accurate formulation and supplementing of the State Educational Requirements for acquiring qualification by professions as elaborated till now and drafting of new ones;
 o Number of framework programmes for VET;
 o Number of State Educational Requirements for acquiring qualification by professions;
• Transfer, popularization and implementation of innovations for ensuring the quality of vocational training and education;
• Establishment and expansion of modular intra-company education with a view to higher flexibility and adaptability of vocational training to the requirements of the labour market;
• Development and approbation of a mechanism for self-evaluation at the educational institution level for the purpose of ensuring good quality of VET;
• Updating of the Framework Agreement for cooperation in the field of VET between the Ministry of Education, Youth and Science, the Ministry of Labour and Social Affairs, NAVET and the nationally represented organizations of the social partners.

Laid down in the Objectives of the Administration of the Ministry of Education, Youth and Science for 2012 are the below listed measures, some of which are also related to the monitoring of the quality of the system for vocational education:

• Updating of the Law on VET with the major objective introduction of the new educational structure and European instruments in the field of VET;
• Introduction of European instruments in VET – starting of a project “Improvement of the quality and introduction of European instruments in the system of VET” under OP “Human Resources Development”;
• Development of a system for arrangement of student study practices in enterprises under OP “Human Resources Development” – “pupil and student study practices” Project;
• Modernization of the material stock in vocational schools;
• Development and endorsement of training plans and programmes for new professions;
• Information and communication campaigns, oriented towards enhancement of the attractiveness of vocational education;
• Organization of final conference under the “Skills for Employment” Project, preparation and publishing of a guidebook on self-evaluation of vocational education;
• Implementation of a project on “Management of effective vocational education” under OP “Human Resources Development”.

• Opening the scheme "Development of Vocational Education and Training in cooperation with employers", financed under the Operational Programme "Human Resources Development"

In connection with the last tasks above it can be added that the currently enforced criteria for evaluation of the quality of vocational education unfortunately do not comprise updating of the training plans and programmes and involvement in activities for improvement of the qualification of teachers, but on the other hand it should be acknowledged that collaboration with the social partners and the branch organizations and the acquiring of practical experience on real work places is envisaged, which to a high extent has a positive influence on the process of synchronization of market demand and supply of qualified workforce.
8. Barriers

A significant numbers of barriers related to the qualification of the building workers which obstruct the expected development and may hinder the achievements of the 2020 targets in the building sector in Bulgaria have been identified. It is hardly possible to assign those barriers to a specific market or policy area and to propose a coherent framework; many of the issues are overlapping and concern – albeit to a different extent – construction companies and professionals, vocational education practitioners, producers and suppliers of building products and technologies, policy makers, etc… However, for the sake of better organization of the results of the analysis, a general distinction will be explored. The barriers are structured in four major categories:

- Barriers in the construction sector;
- Market barriers;
- Policy barriers;
- Barriers in the system of vocational education and training.

8.1. Barriers in the construction sector

Impact of the financial crisis
It is out of question that the abrupt end of the building boom in Bulgaria in 2009 lead to a significant change in the priorities of the construction companies, which had to cut most of their expenses, by most accounts starting with the investments in the professional development of their employees. This conclusion is valid for companies of all sizes, including bigger ones, but not surprisingly mostly affecting SME, which, in turn, represent the major part of the sector.

Lack of coherent HR policies
Closely related to the above-mentioned obstacle, corporate HR policies and activities suffered a major pullback, resulting not only to lack of access to vocational trainings but also to the stability of the jobs and prospects for career development of the skilled workers.

Lack of loyalty
Due to the smaller number of building projects, the main loyalty factor – the remuneration package – is not reaching the levels from previous years. As the working force is highly mobile and open to job opportunities at the EU open labour market, investments in continuing vocational trainings and qualification are perceived as highly risky by most of the employers.

Fragmentation of the labour market; regional discrepancies
Most building projects are concentrated in the largest Bulgarian cities and Black Sea coastline; seasonal workers are usually not interested in participating in trainings, even if on-site training approaches are undertaken.

Motivation of the workforce

The existing working force is generally not interested in participation in vocational training activities, which is evidenced by the appreciation of a number of initiatives of the Bulgarian Construction Chamber and its partnering vocational training centers. There are numerous reasons in the base of this observation, most of them related to insecurity of the jobs and project-by-project employment, but also to the low general education level of the workers.

Low educational level of the workforce: language and literacy barrier

A barrier identified during most of the conducted interviews and observation, the low education level of the workforce is a constant threat to both active participation in trainings and implementation of new building concepts, technologies and materials. A large part of the workers engaged in conventional building crafts, mostly representatives of other language speaking minorities, has problems with literacy in Bulgarian language. Trainings other than “learning-by-doing” are hardly possible.

The significant decrease of the general educational level in Bulgaria is also an obstacle, resulting in more efforts for mastering of high-end use of technologies and materials due to the larger gap between existing skills and required know-how. Additionally to improvement of the professional skills, an emphasis on key competences in the national vocational education system should also be put.

Low prestige of the profession

Not without relation to above-mentioned barriers, the unfavourable public perception of the builder’s profession is a major barrier to attracting young and ambitious people to the sector. The relatively high salaries during the construction boom overcame this barrier to some extent, but it still exists and is very formidable in the crisis period.

Age structure of the workforce

Another related problem with two-sided effect is the large numbers of construction workers in the later stages of their careers. Older workers usually do not manifest interest in continuing vocational training and new technologies; on the other side, (combined with the however existent low interest) the access to career development of young people is hindered.

Lack of experience

Construction of nearly-zero energy building is virtually “terra incognita” for most of the small and medium companies. Due to the lack of experience, the need for further training is not generally recognized.
Lack of practice for nearly-zero energy renovations

There is no regular practice of low/nearly zero energy building renovations. Especially in multifamily buildings, energy efficiency measures are implemented by each apartment owner with no relation to the whole building characteristics. The two most common measures – glazing and external insulation – are usually (especially for the insulation) applied by workers without any formal training in construction. No practice in step-by-step renovation is evidenced.

No access to new technologies, processes, know-how

Among other activities of the construction companies, the financial crisis has significantly reduced the introduction of new technologies, processes and know-how in the building practice, which hampers the opportunities for on-site training and skill up of the construction workers.

Low level of penetration of RES technologies in buildings

Although no relevant statistical data is available, the integration of RES in buildings is estimated to be lower than 1% of the existing building stock and the new buildings, which virtually means no experience in installation, monitoring and maintenance of such technologies.

Grey economy

As discussed above, a significant part of the construction workers is involved in non-formal economical activities, meaning no access to formal trainings.

8.2. Market barriers

Lack of investment interest to NZEB

Due to a number of reasons (e.g. relatively low energy prices, inhabitants accustomed to low level of comfort in existing housing, higher construction costs, insufficient information and knowledge, lack of market incentives, etc.) there is virtually no interest in new NZEB, which in turn leads to low interest in specific trainings.

High cost of low-energy renovations

The same reasons apply to the renovations: both higher costs and low current levels of comfort contribute to unacceptable return rate of investment for low-energy building renovations. As already mentioned, step-by-step renovations are not recognized by the market, so no interest to such training is evidenced.

Lack of market for new technologies and products
Although most energy efficient solutions could be delivered, the small size of the market means higher costs and imbalanced positioning are common. For many of the materials and details, prices are higher than on European market. This is also recognized as an important barrier, especially to on-site and on-demand trainings.

8.3. Policy barriers

Unstable legislation base and institutional structure
Quite a few changes in the legislation base and the institutional structure have been evidenced in the past few years, and the process has not yet finished. Three important EU Directives related to the energy efficiency and integration of RES in building are yet to be fully integrated in the national legislation (Directive 2009/28/EC on the promotion of the use of energy from renewable sources, Directive 2010/31/EU of 19 May 2010 on the energy performance of buildings, the new Energy Efficiency Directive). The impact of the existing legislation cannot be evaluated due to its short terms of existence. No definition for NZEB has been accepted. After recent structural and management changes, the Agency for Sustainable Energy Development is assigned with new duties and responsibility and needs time for adaptation.

Lack of incentives for high-end low-energy new building and renovation projects
No national programmes for support of new NZEB exist. The current programs support (partial or total) renovations with no relation to the expected standards for NZEB.

Urban planning
In general, urban planning is not consistent with the requirements for NZEB. There is no coherent planning for optimized use of prospective solar gains, geothermal sources, etc.

Quality assurance and assessment
No actual measures against underachieving of the energy performance indicators of the new buildings and total renovations are provisioned in the existing legislation. There is no clear evidence if the declared energy efficiency characteristics on project level meet the actual energy performance of the buildings. Differences may well relate to low quality of execution of construction works and need for further trainings.

Lack of pilot and demonstration projects
No NZEB pilot and demonstration projects have been implemented on national or local level of governance. The current projects (mainly for renovations of multifamily buildings) are not based on high energy efficiency standards. This leads to obvious lack of understanding and appreciation of the current EU trends by both construction companies and the workforce.
Lack of coordination between crafts and professions
Better coordination between crafts and professions should be sought after, resulting in broader knowledge of related construction works and avoiding the problem of overspecialization. Moreover, additional controlling instruments are necessary to avoid execution of specialized construction activities by workers with no formal training, which is very common in the practice and especially in the non-formal economy.

8.4. Barriers in the system of vocational education and training

Insufficient facilities and equipment, lack of financing
Vocational trainings in the area of construction works and RES integration in buildings need extensive investments in technical equipment and training facilities, which usually cannot be provided by professional schools and vocational training centers by themselves. The recent developments are result of individual efforts, usually based on EU financing. Additional cooperation patterns – among training institutions and with different businesses – should be explored.

Low number and unfavourable age structure of qualified trainers
The ageing of trainers in professional schools is unfortunately a stable tendency and, by all evidence, no tangible measures are being taken. Moreover, the number of trainers in the years growth for the construction was clearly insufficient, although this process was to some extent regulated by the crisis, as due to the decreased workload in the real sector some of the trainers who had left the system returned to their previous occupation. However, immediate measures should be taken to fight the ageing trend, taking in account the fact that remuneration packages are not attractive in any way.

Access to training of trainers
There are no facilities or programmes for further qualification of teachers in professional disciplines in the national education system. Further solutions should also be found for qualification of construction specialist willing to enter the training system, probably with the participation of the higher educational establishments. Incentives for additional qualification of trainers are also missing.

Monitoring and anticipation of training needs
There is no institution for monitoring or accepted methodology for anticipation of training needs. Intensive cooperation between all interested stakeholders is crucial, including training and education establishments, professional chambers and associations, NGOs, and, most importantly, relevant representatives of the national government.

New training programmes
As the national system for vocational education is quite conservative and changes are implemented at a slower rate compared to the relevant technology developments, introduction of new elements in the education plans and the specific programmes is generally perceived as a major problem. Updates of the programmes should be easier and applied regularly, also in better coordination with the relevant stakeholders. New programmes reflecting emerging new skills should also be under constant consideration.

Cooperation with business actors

Although there are great examples of cooperation with representatives of the business community, they cannot be classified as common practice. Further efforts should be taken for intensive exchange of knowledge, coordination of interests and concrete partnership projects leading to better preparation of trainees for entering the labour market.

Lack of a national system for forecasting new skills

The national system for forecasting new skills (specific-sector skills, transversal skills, emerging professional skills) has not been established in the Bulgarian VET system yet. The cooperation between all stakeholders, the creation of appropriate organizational and financial conditions, the equal distribution of responsibilities, should be the cornerstone for successful establishment and further implementation of medium-term and long-term surveys in this particular area. Through such surveys the Bulgarian VET system will increase its attractiveness and strengthen the link between education and work.

Lack of financial and human resources for updating State Vocational Standards and their further development in terms of units of learning outcomes

State Vocational Standards defines the common and specific competences to professions that trainees should be able to demonstrate after the completion of a training course. The State Vocational Standards are the basis for the development of the training programmes. Keeping up to date the State Vocational Standards through their regular actualization according to the labour market needs is of crucial importance for increasing attractiveness and quality of VET.

Unattractiveness of the professions, lack of adequate professional orientation

Most students and adult trainees are attracted by different professions, predominantly in the areas of economics and computer science. Broad public communications campaigns and initiatives are necessary in order to market the opportunities created by the new developments of energy efficiency and RES.
9. Conclusions

Despite all challenges on the road ahead, it could be concluded that the building and vocational training and education sectors in Bulgaria are generally capable of delivering services which will enable the execution of the goals stated in the National energy strategy until 2020 and the EU 20-20-20 targets. That is, however, only in case certain measures are immediately undertaken to overcome the barriers defined and bridge the existing skill gaps. A rapid progress in transforming the building stock should be achieved, supported to a significant extent by tangible change of the current construction design and practices and upgrade of the available building skills towards quality implementation of low and nearly-zero energy buildings with integration of renewable energy sources.

Improvement of existing skills could be a major transformation factor when applied in real market conditions, as there are even proofs in support of the statement that such improvements could significantly contribute for decreasing the difference between the cost of new low-energy buildings and retrofits and the traditional construction practice. Skills development is also a main driver for introduction of new processes and technologies to emerging markets and could practically lead to actual integration of low-energy building standards to the mainstream building projects. However, these developments could only be expected if stable markets exist, and there are quite a few unfulfilled conditions for this to happen.

On the supply side, experience sharing and accumulation have proved to be the base for maturing of the low-energy construction value chain, which is a turning point for the successful marketing of energy efficient building services. Public policies play a major part in this process and a number of initiatives are expected, some of them focusing on the supply of workers with the skills required to deliver quality buildings - mainly in terms of their capabilities and broad interdisciplinary knowledge. The wealth of possibilities to introduce economic incentives at all levels of governance should be exploited, at the same time providing functional services for quality assurance and advice on sustainable low-energy building projects. Activities by professional associations and chambers, dedicated support groups and NGOs could also become a major contributor in this area.

A clear finding of the analysis is that continuing training efforts should be applied in virtually all areas in order to broaden the understanding of the workforce on the energy efficiency concepts and to build on the existing skills to provide quality implementation on the selected solutions. Without any doubt, an emphasis should be put on meeting the demand for specialists in RES integration in buildings, where the most significant gaps have been identified. These efforts should be spread in as many dimensions as possible – from skilling up unskilled workers, raising the qualification of semi-skilled and skilled workforce, and finally reaching building professionals, engineers and designers, and even managers of building businesses. In its first part, this task is lying on the shoulders of both the initial training and education and continuing vocational education and training systems. However, it is evident that it cannot be solved without provision of enough – in both numbers and quality – trainers and educators, and this is a barrier which needs attention and targeted cooperation efforts of all related stakeholders.

Obviously, it is necessary to update and raise the skills, knowledge and experience of trainers and educators already employed in the system of professional high schools and vocational training centers. A significant number of new (and young) trainers are
also needed, which brings in front the existing problems with their motivation to enter the educational system. On another issue, a wide new range of skills should be covered in training of trainers in order to meet the demand of the fast-growing emerging occupations. And while there are well established systems for formal education targeting the natural reproduction of the traditional occupations, the stable rise of the new technologies and practices provokes questions in terms of which occupations should be involved with specific energy efficiency and RES solutions, or how to combine interdisciplinary knowledge and skills in order to meet the new building requirements. New training and educational programs should be devised in most related areas, providing common comprehension of energy efficiency projects, eliminating over-specialization issues and, at the end, bringing multidisciplinary teams with better understanding of the problem on working sites. Most importantly, new capacities for better short- and mid-term skills needs monitoring and anticipation are needed, and they could also provide the necessary interface for cooperation among all relevant stakeholders.

Based on the research undertaken and the analysis of the results, it may be concluded that the raising of skills and qualification of the existing workforce in the construction sector is of strategic importance for the achievement of the national and European goals in the areas of energy efficiency, greenhouse gas emissions and RES. A strong ally in navigating national policies, the training component should be integrated in most pilot and demonstration projects in sustainable building, combined with introduction of respective legislative and market incentives for both end users and providers. Last but not least, all these efforts should be targeted at establishing of a self-sustaining low-energy building market, as virtually non-existent investor interest is still considered as the main stumbling block for sustainable energy development.
10. Authors/contributors

Bulgarian Construction Chamber:

Djani Antova, M.Sc.Eng., chief expert in "International Relations" department

Hristofor Barumov, expert "Energy Infrastructure"

Tatyana Buchvarova, head of unit "Analyses and Forecasts"

Nina Georgieva, head of unit "Project management"

Stiliyan Ivanov, chief expert in "Project management" department

National Agency for Vocational Education and Training:

Krasimira Brozig, external expert, member of NAVET Managing Board

Adelina Lubomirova, junior expert in “Vocational Qualification and Licensing Directorate” of NAVET

Antoaneta Katzarova, head of “Licensing Department” of NAVET

Penka Nikolova, state expert in “Vocational Qualification and Licensing Directorate” of NAVET

Mariana Pavlova, chief expert in "Licensing Department" of NAVET

EnEfect Consult SP LTD

Arch. Zdravko Genchev, PhD, Executive Director of Center for Energy Efficiency EnEffect

Pavel Manchev, Deputy Director of Center for Energy Efficiency EnEffect

Dipl. Eng. Kamen Simeonov, Project Manager, EnEfect Consult SP LTD

Dragomir Tzanev, PhD, Project Manager, EnEfect Consult SP LTD, Coordinator of BUILD UP Skills Bulgaria project

Acknowledgements:

We would like to acknowledge the voluntary support of:

Deyan Pushkarov, President of NAVET

Dipl. Eng. Stanislav Andreev, EnEfect Consult SP LTD

Dipl. Eng. Alexander Stankov, EnEfect Consult SP LTD
11. References

Central professional register at the Bulgarian Construction Chamber. Legal documents. Available at: http://register.ksb.bg/

Ministry of Education, Youth and Science. State educational requirements for acquiring professional qualification.

National Statistical Institute, Sector “Energy”. Available at: http://www.nsi.bg/otrasalen.php?otr=37

National Statistical Institute, Sector “Housing Fund”. Available at: http://www.nsi.bg/otrasalen.php?otr=45

National Statistical Institute, Sector “Labour Market”. Available at: http://www.nsi.bg/otrasalen.php?otr=51

12. Glossary

Air-conditioning system
A combination of all components required to provide a form of air treatment in which temperature is controlled or can be lowered, possibly in combination with the control of ventilation, humidity and air cleanliness [EPBD, 2002/91/EC].

Boiler
The combined boiler body and burner-unit designed to transmit to water the heat released from combustion [EPBD, 2002/91/EC].

Building Physics
Building Physics refers to Applied Science dealing with the hydrothermal, acoustical and light related properties of building components (roofs, facades, windows, partition walls etc.), rooms, buildings and building assemblies. Basic considerations include requirements for thermal, acoustic and visual comfort, healthy environment within limitations imposed by architectural, material-related, economic and ecological considerations.

Building shell/ Building envelope
A building shell is the separation between the interior and the exterior environments of a building. The building shell includes the roof, the walls, the doors and the windows, as well as the bottom slab and encloses thereby the heated or airconditioned space volume.

Co-generation
Simultaneous conversion of primary fuels into thermal energy and electrical energy, meeting certain quality criteria of energy efficiency. Also known as combined heat and power (CHP).

Controlled ventilation with heat recovery
Ventilation is a necessary procedure of replacing the used up interior air by air from outside. Through a duct – system, the air from outside is being drawn in by electrically propelled fans (direct current motors). It is filtered, and led to a heat transducer, optionally warmed up and then led into the individual areas (e.g. living room, sleep area, classroom, work spaces). Used up air is drawn off in the kitchen, bath-room, toilets and led by the way of a second duct system to the heat transducer and blown outside. The amount of air needed per person amounts to approx. 20-30 m³/h. A controlled ventilation system with heat recovery is necessary for all energy-efficient buildings. The efficiency for high-efficient heat recovery systems is over 90%.

District heating/cooling
The distribution of thermal energy in the form of steam, hot water or chilled liquids, from a central source of production through a network to multiple buildings or sites, for the use of space or process heating or cooling [EPBD, 2010/31/EC].

Double/triple glazing
Windows made by glazing with two or three glass panes. The interspace between the panes is filled with gas in order to reduce the transmissions of energy. To reduce the solar radiation, the surface of one or more panes is coated. Typical values are:
- 2-panes-gazing: Ug = 2,8-3,0 W/(m2K)
- 2-panes-heat protection glazing: Ug = 1,1-1,3 W/(m2K)
- 3-panes-heat protection glazing: Ug = 0,6-0,8 W/(m2K)

Energy audit
Inspection, survey and analysis of energy flows in a building with the objective of understanding the energy dynamics of the system. Typically an energy audit is conducted to seek opportunities to reduce the amount of energy input into the system without negatively affecting the output. It seeks to prioritize the energy usage according to the greatest to least cost effective opportunities for energy savings. Member States shall ensure the availability of efficient,
high-quality energy audit schemes which are carried out in an independent manner, to all final consumers.

Energy performance certificate

It shows energy performance of a building. An energy performance certificate is made available to the owner or by the owner to the prospective buyer or tenant, as the case might be. The validity of the certificate shall not exceed 10 years. The energy certificate for buildings shall include reference values such as current legal standards and benchmarks in order to make it possible for consumers to compare and assess the energy performance of the building. The certificate shall be accompanied by recommendations for the cost-effective improvement of the energy performance.

Energy performance of a building

The amount of energy actually consumed or estimated to meet the different needs associated with a standardised use of the building, which may include, inter alia, heating, hot water heating, cooling, ventilation and lighting. This amount shall be reflected in one or more numeric indicators which have been calculated, taking into account insulation, technical and installation characteristics, design and positioning in relation to climatic aspects, solar exposure and influence of neighbouring structures, own-energy generation and other factors, including indoor climate, that influence the energy demand [EPBD, 2002/91/EC].

Existing building

Existing buildings are representing older energy standards. For these buildings data necessary to assess their energy use are known or can be measured. A new building will become an existing building, as soon as newer standards and energy requirements are published by the national legislations.

Floor area

- **Floor area gross** Total floor area of all floors of a building calculated with the external dimensions of the building including structures, partitions, corridors and stairs.
- **Floor area net** Sum of all areas between the vertical building components (walls, partitions), i.e. gross floor area reduced by the area for structural components.
- **Floor area usable** The fraction of the net floor area for the intended use of the building, i.e. net floor area reduced by circulation areas (corridors, stairs etc.) and functional areas (WCs, storage rooms etc.).

Gross domestic product (GDP)

Gross domestic product (GDP) is the market value of all officially recognized final goods and services produced within a country in a given period.

Heat pump

A device or installation that extracts heat at low temperature from air, water or earth and supplies the heat to the building [EPBD, 2002/91/EC].

Low energy house

Generically said, a low-energy house is any type of house that uses less energy than a regular house but more than a passive house. Energy performance of a low-energy house is about half lower than the minimum requirement. There is no global definition for low energy house because national standards vary considerably among countries. For example, in Germany a “low energy house” has an energy consumption limit of 50 kWh/m²/year for space heating.

Major renovation

Renovation is changing or substitution of parts of a building. A major renovation is the case, where the total cost of the renovation related to the existing building is more than 25% of the value of the building (exclusive the land where the building is situated) or the case where more than 25% of the building shell undergoes renovation.

Minimum energy performance requirements

Member States should set minimum requirements for the energy performance of buildings and may differentiate between new and existing buildings as well as different categories of buildings. The
requirements should be set with a view to achieving the cost-optimal balance between the investments involved and the energy costs saved throughout the life-cycle of the building.

Nearly zero energy building

A building that has very high energy performance, as determined in accordance with Annex I of the EPBD recast. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby [EPBD recast, 2010/31/EC].

New building

New buildings are completely new erected. They are constructed by respecting the newest laws and standards, including meeting minimum energy performance requirements laid down in national legislation. A building will be called new, until newer legislation, newer energy performance standards or refurbishments had taken place.

Passive house

A passive house is a building in which a comfortable room temperature of about 20°C can be achieved without conventional heating and cooling systems. Such buildings are called „passive”, because the predominant part of their heat requirements is supplied from „passive” sources, e.g., sun exposure and waste heat of persons and technical devices. The heat still required can be delivered to rooms by the controlled ventilation system with heat recovery.

The annual heat demand for passive house is very low - in the middle of Europe about 15 kWh/m²/year. The need for total primary energy use should not exceed 120 kWh/m²/year, including heating and cooling, domestic hot water, and household electricity.

The basic features that distinguish passive house construction: compact form and good insulation; southern orientation and shade considerations; good air tightness of building envelope; passive preheating of fresh air; highly efficient heat recovery from exhaust air; using an air-to-air heat exchanger; hot water supply using renewable energy sources; using energy-saving household appliances. The design of passive houses is a holistic process of planning and realization. It can be used for designing new buildings or for energy renovation of existing buildings.

Pre-fabricated building

Buildings which are partially or completely built in factories. Most of the prefabricated buildings are made of wooden or of concrete elements which will be completed on site.

Primary energy

Energy that has not been subjected to any conversion or transformation process. Primary energy includes non-renewable energy and renewable energy. If both are taken into account it can be called total primary energy.

Public building

The building is occupied by public authorities or provides public services to a large number of persons. It is frequently visited by members of the general public e.g., administration buildings, schools, hospitals and buildings for sports. Public funding is used for its maintenance.

Renewable energy

Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are naturally replenished.

Residential building

Occupied or unoccupied, owned or rented, single-family or multifamily house, excluding institutional housing such as hostels or school dormitories, hospitals, night shelters, and military barracks. Types of residential houses:

- detached house (free standing house e.g., for a single family);
- semi-detached or twin house (a pair of houses built side by side as units sharing a party-wall and usually in such a way that each house’s layout is a mirror image of its twin);
- row house (a row of identical or mirror-image houses share side walls; the first and last of these houses are often larger than those houses in the middle);
• a multi-storey residential building contains more than one apartment, drawn together in one building structure. Mostly with similar storey-plans, it has centralized staircases and supply units.

Thermal bridge

An area in the building envelope which has a higher heat flow than the surrounding is called a thermal bridge. A classic thermal bridge is the overhanging balcony plate, leading through an insulated outer wall. Typical effects of thermal bridges are: decreased interior surface temperatures; in the worst cases this can result in high humidity in parts of the construction; significantly increased heat losses.

Thermal comfort

Human thermal comfort is defined as the state of mind that expresses satisfaction with the surrounding environment. Maintaining thermal comfort for buildings' inhabitants is one of the most important goals for engineers when designing plans for heating, ventilation, air conditioning and the building envelope. Factors, which determine thermal comfort are: indoor and outdoor air temperature, air movement, relative humidity, clothing people are wearing and the activity level they are engaged in.

Tonne of oil equivalent

The tonne of oil equivalent (toe) is a unit of energy: the amount of energy released by burning one tonne of crude oil, approximately 42 GJ (as different crude oils have different calorific values, the exact value of the toe is defined by convention; unfortunately there are several slightly different definitions as discussed below).

Vocational training

Vocational education is a type of education in which people are trained in practical skills and after successful exam, their knowledge is certified by a legal training institution.
List of Abbreviations

AICB - Association of Industrial Capital in Bulgaria
BCC - Bulgarian Construction Chamber
CEA - Classification of Economic Activities
ECCP - European Climate Change Programme
DHW – Domestic hot water
“Euro EnEff” project – “Development of a guidebook for energy intelligent retrofitting of buildings”
IEE - Intelligent Energy Europe
Install+RES Project - “Training courses for installers of small-scale RES systems in buildings” (http://www.resinstaller.eu)
NAVET – National Agency for Vocational Education and Training
NEP - National examination programmes
NQF - National Qualification Framework
NSI – National Statistical Institute
OP – Operational Programme
“REE_TROFIT” Project – “Training in application of solutions with renewable energy in energy renovation of buildings”
RES – Renewable Energy Sources
SEDA – Sustainable Energy Development Agency
“SIRET” Project – “Specialists in renewable energy sources and technologies in sanitary, space heating and air-conditioning systems”
TOE - Tonne of oil equivalent
UNFCCC - UN Framework Convention on Climate Change
VET - Vocational Education and Training
BUILD UP Skills
The EU Sustainable Building Workforce Initiative in the field of energy efficiency and renewable energy

BUILD UP Skills is a strategic initiative under the Intelligent Energy Europe (IEE) programme to boost continuing or further education and training of craftsmen and other on-site construction workers and systems installers in the building sector. The final aim is to increase the number of qualified workers across Europe to deliver renovations offering a high energy performance as well as new, nearly zero-energy buildings. The initiative addresses skills in relation to energy efficiency and renewable energy in all types of buildings.

BUILD UP Skills has two phases:

I. First, the objective is to set up national qualification platforms and roadmaps to successfully train the building workforce in order to meet the targets for 2020 and beyond.

II. Based on these roadmaps, the second step is to facilitate the introduction of new and/or the upgrading of existing qualification and training schemes.

Throughout the whole duration of the initiative, regular exchange activities are organised at EU level to underline the European dimension of this important initiative and to foster the learning among countries.

The BUILD UP Skills Initiative contributes to the objectives of two flagship initiatives of the Commission’s ‘Europe 2020’ strategy — ‘Resource-efficient Europe’ and ‘An Agenda for new skills and jobs’. It is part of the Commission’s Energy Efficiency Action Plan 2011. It will also enhance interactions with the existing structures and funding instruments like the European Social Fund (ESF) and the Lifelong Learning Programme and will be based on the European Qualification Framework (EQF) and its learning outcome approach.