Practical Tools for the Construction Sector in Digital Twin

Round 1 – Quality Control Digital Twin Applications

COGITO

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

Agenda

- Introduction: COGITO project innovations and goals
- 1st Poll: What is your experience with Digital Twin?
- Quality Control Data Acquisition: Visual Data Pre-Processing for contributing visual data (2D and 3D) to the project Digital Twin
- Geometric Quality Control: GeometricQC for automatically control geometric quality against defined specifications
- Visual Quality Control: VisualQC for automated defects detection in pictures acquired on site
- DigitAR: On-site Augmented Reality-based Digital Twin information visualisation and decision making
- **Digital Command Centre DCC**: Off-site Digital Twin information visualisation
- Questions and Answers
- **2nd Poll**: Will the tools answer your needs?
- Wrap up & conclusions

Introduction

Project Innovations and Goals

Giorgos Giannakis

Hypertech SA

COGITO

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

COGITO in a nutshell

- Problem
- The construction phase has so far been overlooked by the Digital Twin community;
- Lack of commonly agreed standards and low interoperability among collected data reveal a major drawback to the enterprises' digital transformation.

COGITO in a nutshell

- The construction phase has so far been overlooked by the Digital Twin community;
- Lack of commonly agreed standards and low interoperability among collected data reveal a major drawback to the enterprises' digital transformation.
 - Going beyond "static" Building Information Modelling (BIM) is required by leveraging technologies like IoT, Cloud Computing and Artificial Intelligence;
 - Construction projects require collaboration between many parties -> transparent platforms for digital data handling are needed;
 - Automated progress and resource tracking, automated quality assessment, safety measures planning, and hazardous areas detection -> need for a COnstruction-phase diGItal Twin mOdel (COGITO).

Need

Problem

COGITO in a nutshell

Problem

COGIT

Need

- The construction phase has so far been overlooked by the Digital Twin community;
 - Lack of commonly agreed standards and low interoperability among collected data reveal a major drawback to the enterprises' digital transformation.
 - Going beyond "static" Building Information Modelling (BIM) is required by leveraging technologies like IoT, Cloud Computing and Artificial Intelligence;
 - Construction projects require collaboration between many parties -> transparent platforms for digital data handling are needed;
 - Automated progress and resource tracking, automated quality assessment, safety measures planning, and hazardous areas detection -> need for a COnstruction-phase diGItal Twin mOdel (COGITO).
 - Development and delivery of (1) a transparent digital data management platform and (2) digital Construction 4.0 Solution AARHUS UNIVERSIT toolbox that contributes to productivity improvement and increased safety. ASM ≜UC COGITO Novitech CERTH CENTRE FOR RESEARCH & TECHNOLOGY ferrovia HYPERTECH

COGITO Innovations

Twin Platform

As-planned data

Objective 1

Delivery of a Construction Digital Twin platform

Objective 2

Delivery of digital tools for Quality Control and Workflow Management

Objective 1

Delivery of a Construction Digital Twin platform

Objective 2

Delivery of digital tools for Quality Control and Workflow Management

Obiectiv

Delivery of digital tools for Health and Safety Management

Objective 1

Delivery of a Construction Digital Twin platform

Objective 2

Delivery of digital tools for Quality Control and Workflow Management

Obiectiv

Delivery of digital tools for Health and Safety Management

Objective 4

Demonstration on actual construction sites to quantify the benefits of the COGITO tools

Objective 5

Research, design and promotion for standardization data exchange formats

Objective 4

Demonstration on actual construction sites to quantify the benefits of the COGITO tools

Objective 1

Delivery of a Construction Digital Twin platform

Objective

Delivery of digital tools for Quality Control and Workflow Management

Objectiv

Delivery of digital tools for Health and Safety Management

Objective 6

Promotion of the COGITO solution's adoption through intense dissemination

Objective 5

Research, design and promotion for standardization data exchange formats

Objective 4

Demonstration on actual construction sites to quantify the benefits of the COGITO tools

Objective 1

Delivery of a Construction Digital Twin platform

Objective 2

Delivery of digital tools for Quality Control and Workflow Management

Objectiv

Delivery of digital tools for Health and Safety Management

COGITO Quality Control

As-planned data

Reality capture tools

Visual Data Pre-processing module

COGITO Quality Control

COGITO Quality Control

COGITO

1st Poll

What is your experience with Digital Twin?

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

COGITO

Quality Control Data Acquisition

Visual Data Pre-Processing for contributing visual data to the DT

Thanos Tsakiris

CERTH

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

Visual Data Pre-processing Tool Scope

Uploading

Easy uploading of the visual data that can be collected through various data sources / devices.

Pre-processing

It is essential to pre-process the visual data before feeding them to the Quality Control algorithms (Geometric or Visual QC tools) in order to achieve more accurate results.

Architecture

Visual Data Acquisition

Two types of visual data:

1. Images (2D)

- Cameras
 - Smartphones
 - HoloLens
 - Drones

2. Point clouds (3D)

Visual Data Pre-processing Tool

A user of the Visual Data Pre-processing Tool needs to follow these steps:

The Digital Twin Platform will provide the necessary data to the appropriate Quality Control Tool

Use Case – Geometric QC

Scan the required IFC elements using a laser scanner

Upload the point cloud files (E57 or PLY format)

Assign the capturing timestamp to each point cloud

Use Case – Visual QC

Image Processing

Sigr	in to your acco	bunt
Email		
Password		
Remember me		Forgot Password?
	Sign In	
	New user? Register	

COGITO

Geometric Quality Control

GeometricQC for automatically control geometric quality against defined specifications

Martin Bueno

University of Edinburgh

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

Use Case - Geometric QC

- COGITO
- Automated geometric tolerance compliance control

As-planned data

Use Case - Geometric QC

Automated geometric tolerance compliance control

Use Case - Geometric QC

What QC needs to be conducted? And when?

What QC needs to be conducted? And when?

 Digital Dictionary of QC Rules (i.e. Specifications)

 What QC needs to be conducted? And when?

 Digital Dictionary of QC Rules (i.e. Specifications)

2. Set of QC Rule Instances:

 At each location in the as-design BIM model where the *Rule Context* is encountered, an *Instance* of the corresponding rule applies.

Components:

- 357 Concrete beams
- 195 Concrete columns
- 6 Concrete Walls
- 5 Concrete Slabs

Relationships:

- Adjacency within storey (horizontal)
- Physical connection
- Above/Below (i.e. stacked)
- Storey adjacency (vertical)

Components:

- 357 Concrete beams
- 195 Concrete columns
- 6 Concrete Walls
- 5 Concrete Slabs

Relationships:

- 6,013 Adjacency within storey (horizontal)
- 407 Physical connection
- 252 Above/Below (i.e. stacked)
- 5 Storey adjacency (vertical)

Components:

- 357 Concrete beams
- 195 Concrete columns
- 6 Concrete Walls
- 5 Concrete Slabs

Relationships:

- 6,013 Adjacency within storey (horizontal)
- 407 Physical connection
- 252 Above/Below (i.e. stacked)
- 5 Storey adjacency (vertical)

QC Rule ID	Description	Count
QC_1	Inclination of a column/wall	195
QC_2	Deviation between centres of stacked columns/walls	126
QC_3	Curvature of a column/wall between adjacent storey levels	195
QC_4	Location of a column/wall at any storey level w.r.t base level	126
QC_5	Location of a beam-to-column connection	396
QC_6	Position of bearing axis of support	357
QC_7	Cross-sectional dimensions	551
QC_8	Lap-joints	11
QC_9	Free space between adjacent columns/walls	3,039
QC_10	Horizontal straightness of beams	357
QC_11	Distance between adjacent beams	1,737
QC_12	Inclination of a beam/slab	362
QC_13	Level of adjacent beams	1,737
QC_14	Level of adjacent floors at supports	5
QC_15	Orthogonality of a cross-section	557
	Total:	9,751

Use Case - Geometric QC

Which QC rule instances are passed, failed, or couldn't be controlled? And why?

- Which QC rules are passed, failed, not controlled? And why?
 - 1. As-built element geometry (pose)

- Which QC rules are passed, failed, not controlled? And why?
 - 1. As-built element geometry (pose)

Which QC rules are passed, failed, not controlled? And why?

- 1. As-built element geometry (pose)
- 2. Apply *code* of pre-established *QC rule Instances* using as-built element geometry

Geometric QC Execution QC2406 QC_UID Rst_advanced_sample_project_QC2406 Dictionary_ID QC_12 [1WrzGm1SD2ev45B?OWQ3EP] Involved_Components 17/01/2022 TimestampSchedule Result TimestampPerformed Unit ScalarResult ToleranceReference

Geometric QC Execution QC2406 QC_UID Rst_advanced_sample_project_QC2406 Dictionary_ID QC_12 [1WrzGm1SD2ev45B?OWQ3EP] Involved_Components 17/01/2022 TimestampSchedule Result **TimestampPerformed** Unit **ScalarResult** ToleranceReference QC 12 QC_12 QCRule_ID SourceDocument EN 13670-2009 BeamsAndSlabs_annex_c SourceSection Inclination of a beam or a slab Description

QC2406		
QC_UID	Rst_advanced_sample_project_QC2406	
Dictionary_ID	QC_12	
Involved_Components	[1WrzGm1SD2ev45B?OWQ3EP]	
TimestampSchedule	17/01/2022	
Result		
TimestampPerformed		
Unit		
ScalarResult		
ToleranceReference		

QC_12	
QCRule_ID	QC_12
SourceDocument	EN 13670-2009
SourceSection	BeamsAndSlabs_annex_c
Description	Inclination of a beam or a slab

QC2406		
QC_UID	Rst_advanced_sample_project_QC2406	
Dictionary_ID	QC_12	
Involved_Components	[1WrzGm1SD2ev45B?OWQ3EP]	
TimestampSchedule	17/01/2022	
Result	Fail	
TimestampPerformed	02/02/2022	
Unit	[distance, metres]	
ScalarResult	0.088	
ToleranceReference	0.025	

QC_12	•
QCRule_ID	QC_12
SourceDocument	EN 13670-2009
SourceSection	BeamsAndSlabs_annex_c
Description	Inclination of a beam or a slab

Geometric OC Execution	QC2416	
	QC_UID	Rst_advanced_sample_project_QC2416
	Dictionary_ID	QC_5
	Involved_Components	[1WrzGm1SD2ev45B?OWQ3EP, 18YHwga450Mw4Fy6M5t_8F]
	TimestampSchedule	17/01/2022
	Result	
	TimestampPerformed	
	Unit	
	ScalarResult	
	ToleranceReference	

Geometric OC Execution	QC2416	
	QC_UID	Rst_advanced_sample_project_QC2416
	Dictionary_ID	QC_5
	Involved_Components	[1WrzGm1SD2ev45B?OWQ3EP, 18YHwga450Mw4Fy6M5t_8F]
	TimestampSchedule	17/01/2022
	Result	
	TimestampPerformed	
	Unit	
	ScalarResult	
	ToleranceReference	
	QC_5	
	QCRule_ID	QC_5
	SourceDocument	EN 13670-2009
	SourceSection	BeamsAndSlabs_a
	Description	Beam-to-Column location

QC2416	
QC_UID	Rst_advanced_sample_project_QC2416
Dictionary_ID	QC_5
Involved_Components	[1WrzGm1SD2ev45B?OWQ3EP, 18YHwga450Mw4Fy6M5t_8F]
TimestampSchedule	17/01/2022
Result	
TimestampPerformed	
Unit	
ScalarResult	
ToleranceReference	

QC_	_5

QCRule_ID	QC_5
SourceDocument	EN 13670-2009
SourceSection	BeamsAndSlabs_a
Description	Beam-to-Column location

QC2416		
QC_UID	Rst_advanced_sample_project_QC2416	
Dictionary_ID	QC_5	
Involved_Components	[1WrzGm1SD2ev45B?OWQ3EP, 18YHwga450Mw4Fy6M5t_8F]	
TimestampSchedule	17/01/2022	
Result	Pass	
TimestampPerformed	02/02/2022	
Unit	[distance, metres]	
ScalarResult	0.010	
ToleranceReference	0.020	

QC_	_5
OCR	ule

QCRule_ID	QC_5
SourceDocument	EN 13670-2009
SourceSection	BeamsAndSlabs_a
Description	Beam-to-Column location

COGITO

Visual Quality Control

VisualQC for automated defects detection in pictures acquired on site

Thanos Tsakiris

CERTH

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

Automated visual inspection and defect detection

As-planned data

Automated visual inspection and defect detection

What QC needs to be conducted? And when?

What QC needs to be conducted? And when?

What QC needs to be conducted? And when?

Based on the element material \rightarrow 2 Categories:

What QC needs to be conducted? And when?

Based on the element material \rightarrow 2 Categories:

1. Concrete defects

What QC needs to be conducted? And when?

Based on the element material \rightarrow 2 Categories:

- 1. Concrete defects
- 2. Steel defects

Concrete surface defects
Crack

- 1. Concrete surface defects
 - 1. Crack
 - 2. Blistering

- 1. Concrete surface defects
 - 1. Crack
 - 2. Blistering
 - 3. Honeycomb

- 1. Concrete surface defects
 - 1. Crack
 - 2. Blistering
 - 3. Honeycomb
 - 4. Efflorescence

- 1. Concrete surface defects
 - 1. Crack
 - 2. Blistering
 - 3. Honeycomb
 - 4. Efflorescence
 - 5. Hole

Steel surface defects Rail track damage

- 2. Steel surface defects
 - 1. Rail track damage
 - 2. Pitted surface

- 2. Steel surface defects
 - 1. Rail track damage
 - 2. Pitted surface
 - 3. Patch

- 2. Steel surface defects
 - 1. Rail track damage
 - 2. Pitted surface
 - 3. Patch
 - 4. Scratch

Is a defect detected in each image or not?

Which defect type is detected?

Related to an IFC element (decision based on the material type - concrete or steel)

- What is the QC result for a specific element, based on a specific image?
 - Passed: No defect detected

- What is the QC result for a specific element, based on a specific image?
 - Passed: No defect detected
 - Failed: Defect detected

- What is the QC result for a specific element, based on a specific image?
 - Passed: No defect detected
 - Failed: Defect detected
 - Undefined: Unknown surface material

Visual QC Execution

Visual QC Execution

	QC2416	
		Rst_advanced_sample_project_QC2416
	Building_Component	QC_5
	Global_ID	[1WrzGm1SD2ev45B?OWQ3EP, 18YHwga450Mw4Fy6M5t_8F]
	Material	17/01/2022
	Predicted_Label	
	Confidence_Level	
_		Crack 0.92

DigiTAR

On-site Augmented Reality-based Digital Twin information visualisation and decision making

Thanos Tsakiris

CERTH

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

Digital **T**win visualisation with **A**ugmented **R**eality

Scope of the DigiTAR tool (HoloLens app)

- 1. Visualise the results of the Quality Control (QC) components (Geometric and Visual)
- 2. Visualise potential construction site hazards (Health and Safety issues)
- 3. Collect as-built data and implement part of the Visual Data Pre-processing on-site

DigiTAR Workflow: Quality Control mode

The user of the DigiTAR Tool needs to follow these steps for the Quality Control mode:

Login to the application

Select a construction project

Select the Quality Control mode

Receive the IFC model and QC results from the DTP

Perform registration to align the 3D BIM model to the real world

View the Geometric and Visual QC results

Confirm/Reject the QC results and add remedial works if needed

The 3D IFC Viewer of the DigiTAR tool requires both the geometry representation of the BIM model (OBJ file) and the IFC file.

> The Digital Twin Platform will provide the necessary data from the appropriate Quality Control Tool

Use Case –QC results visualization

Digital Command Centre - DCC

Off-site Digital Twin information visualisation

Giorgos Giannakis

Hypertech SA

 $\langle \cdot \rangle$

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

DCC Architecture

83

DCC – Web Application UI

84

Tree view: Different grouping modes							
Element Tree 😑	~	Element Tree =>	~				
 rst_advanced_sample_project_obj 	ØØ	_sample_project_obj	© X	į			
▼ Default	0 2		© X				
▼ IfcBuilding	© Q	ng	© Q				
Sub Level	© Q	evel	© X				
01 - Entry Level	© Q	ntry Level	© X				
02 - Floor	© Q	Concrete-Round-Column:450mm:122477	\odot				
03 - Floor	© &	Concrete-Round-Column:450mm:122478	\odot \otimes				
► Roof	© Q	Concrete-Round-Column:450mm:122479	© X				
		Concrete-Round-Column:450mm:122480	\odot \otimes				
		Concrete-Round-Column:450mm:122481	© X				
		Concrete-Round-Column:450mm:122482	$\odot \mathscr{D}$				
		Concrete-Round-Column:450mm:122483	\odot \otimes				
		Concrete-Round-Column:450mm:122484	$\odot \mathscr{D}$				
		Concrete-Round-Column:450mm:122485	$\odot \mathscr{D}$				
		Concrete-Round-Column:450mm:122486	0 8				
Element Tree 😑	~	Element Tree 😐	^				
rst_advanced_sample_project_obj	© X	▶ IfcBeam		1			
		▶ IfcBuilding					
		 IfcBuildingStorey 					
		Sub Level					
		01 - Entry Level					
		02 - Floor					
		03 - Floor					
		Roof					
		▶ IfcColumn					
		 IfcElementAssembly 					
		▶ IfcMember					
		 IfcOpeningElement 					
		► IfcPlate					
		► IfcProject					
		IfcReinforcingBar					

85

GeometricQC results in DCC

2nd Poll

Will the tools answer your needs?

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

Questions & Answers

cogito-project.eu

COGITO