



This project has received funding from the European Union's HORIZON 2020 research and innovation programme under grant agreement No 892421



## **Report on the use of (energy) data within Energy Performance Certificates (EPCs) schemes**

Version 1, May 2021

VITO – Flemish Institute for Technological Research NV **www.epanacea.eu** 

#### Published and produced by: VITO, VTT, CRES, CENER

Authors: Evi Lambie (VITO), Yixiao Ma (VITO), Theresa Urbanz (EASt), Elpida Polychroni (CRES), María Fernández Boneta (CENER), Teemu Vesanen (VTT)

Reviewers: Irena Kondatenko (VITO), Iná Eugenio Noronha Maia (TU WIEN), Krzysztof Klobut (VTT)

Layout: SYMPRAXIS

Cover image: outsiderzone / Depositphotos.com

Dissemination level: Public

Website: www.epanacea.eu

© 2020 ePANACEA project. Reprint allowed in parts and with detailed reference only.

Project duration: June 2020 – May 2023 Grant Agreement: 892421 – ePANACEA – H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-EE-2019

Coordinator:



**Project Partners:** 



The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

## **HISTORY OF CHANGES**

| Version | Month Year | Organisation | Comments                                                                                        |  |
|---------|------------|--------------|-------------------------------------------------------------------------------------------------|--|
| 1.0     | 18/03/2021 | VITO         | First draft section 1 and section 2                                                             |  |
| 1.1     | 15/04/2021 | VITO         | First draft of the full report                                                                  |  |
| 1.2     | 03/05/2021 | VITO         | Final draft report for internal review                                                          |  |
| 1.3     | 12/05/2021 | TUWien       | Final draft for first review                                                                    |  |
| 1.4     | 25/05/2021 | VTT          | Final draft for second review                                                                   |  |
| 1.5     | 31/05/2021 | VITO         | Final version after review, ready for upload by project coordinator to Funding & Tenders portal |  |

## **TABLE OF CONTENTS**

| OVER   | VIEW OF THE EPANACEA PROJECT                                         | 2 -  |
|--------|----------------------------------------------------------------------|------|
| EXEC   | UTIVE SUMMARY                                                        | 3 -  |
| GLOS   | SARY                                                                 | 4 -  |
| 1.     | INTRODUCTION                                                         | 5 -  |
| 2.     | INVENTORY OF DATA VARIABLES                                          | 6 -  |
| 2.1.   | NATURE OF DATA                                                       | 6 -  |
| 2.1.1. | Building envelope                                                    | 7 -  |
| 2.1.2. | Boundary Conditions and Occupant Behaviour                           | 7 -  |
| 2.1.3. | HVAC systems                                                         | 8 -  |
| 2.1.4. | Energy Efficiency                                                    | 10 - |
| 2.2.   | DATA ACCESSIBILITY                                                   | 11 - |
| 2.2.1. | Ownership and privacy sensitivity                                    | 11 - |
| 2.2.2. | Exploration of (energy) databases availability and their use in EPCs | 12 - |
| 2.3.   | IDENTIFICATION AND POST-PROCESSING METHODS                           | 13 - |
| 2.3.1. | Acquisition                                                          | 14 - |
| 2.3.2. | Post-processing measured data                                        | 15 - |
| 3.     | LITERATURE REVIEW: IMPACT OF INCORPORATING THE DATA IN THE EPC       | 17 - |
| 3.1.   | UNCERTAINTY IN BUILDING PERFORMANCE ANALYSES                         | 17 - |
| 3.2.   | IMPACT OF OCCUPANT BEHAVIOUR                                         | 18 - |
| 3.3.   | INCORPORATING MEASUREMENT DATA IN THE EPC ASSESSMENT                 | 19 - |
| 4.     | CONCLUSIONS                                                          | 21 - |
| 5.     | REFERENCES                                                           | 22 - |
| 5.1.   | References                                                           | 22 - |
| 5.2.   | ADDITIONAL RELEVANT REFERENCES                                       | 23 - |
| 6.     | ANNEX                                                                | 25 - |



## OVERVIEW OF THE ePANACEA PROJECT

After 10 years of track record, the current EPC schemes across the EU face several challenges which have led to a not full accomplishment of their initial objectives: lack of accuracy, a gap between theoretical and real consumption patterns, absence of proper protocols for inclusion of smart and novel technologies, little convergence across Europe, lack of trust in the market and very little user awareness related to energy efficiency.

The objective of the ePANACEA project is to develop a holistic methodology for energy performance assessment and certification of buildings that can overcome the above-mentioned challenges. The vision of ePANACEA is to become a relevant instrument in the European energy transition through the building sector.

ePANACEA comprises the creation of a prototype (the Smart Energy Performance Assessment Platform) making use of the most advanced techniques in dynamic and automated simulation modelling, big data analysis and machine learning, inverse modelling or the estimation of potential energy savings and economic viability check.

A relevant part of the project is to have a fluent dialogue with European policy makers, certification bodies, end-users and other stakeholders through two types of participatory actions: a feedback loop with policy makers, carried out through the so-called Regional Exploitation Boards (REBs) covering EU-27+UK+Norway on the one hand, and dialogue with end-users, established by means of specific thematic workshops, on the other.

Thanks to these participatory actions, the acceptance of the ePANACEA approach will be tested and validated in order to become aligned with and meet the needs of national public bodies, end-users and other stakeholders.

ePANACEA will demonstrate and validate reliability, accuracy, user-friendliness and cost-effectiveness of its methodology through 15 case studies in 5 European countries.

## **EXECUTIVE SUMMARY**

This document describes the outcome of ePANACEA task T2.4 "Supplementing EPCs with additional measured or calculated data". An inventory of data is presented, which is an overview of all data that can be used to supplement or replace the current energy performance certificate. Various types of data are explored, related to building geometry, building envelope, boundary conditions, occupant behaviour, HVAC systems and energy performance. Moreover, a literature review has explored the potential impact of the incorporation of this data.

A scoping analysis is performed, in which we start from an inventory of all data that can be measured, after which the scope is narrowed to only the data variables that can be relevant to incorporate in the EPC. Next, the selected data variables are further analysed via their nature and accessibility, as well as their post-processing methods.

Furthermore, the literature review shows that several types of data have an influence on the uncertainty of building performance analyses, which can be overcome by calibrating the performance assessment model. However, the occupant behaviour related inputs have one of the most important impacts on the energy performance calculation.



## GLOSSARY

- BACS Building automation and control system
- DHW Domestic hot water
- EPC Energy Performance Certificate
- EPBD Energy Performance of buildings directive
- EV Electric vehicle
- GDPR General data protection regulation
- IoT Internet of Things
- RES Renewable energy system
- SH Space heating



## 1. INTRODUCTION

The issuing of EPCs has been imposed by the EPBD since 2002, for all buildings that are constructed, sold or rented. Since then, EPCs are an important instrument in Europe to facilitate the energy performance assessment of buildings, to inform home owners and raise awareness on the performance of their building property. The EPC includes a standardized evaluation of the building, incorporating default boundary conditions and user behaviour. However, a significant gap is found between the standardized performance according to the EPC and the actual energy use, most commonly known as the energy performance gap.

Therefore, EU legislation is fostering implementation (or usage) of smart meters and IoT devices which allow monitoring of various energy flows and building occupancy. The information derived from the smart meters and IoT devices enable development of new services and approaches for building performance assessments. Methods using measured data with limited post-processing can serve as an informative aspect additional to the theoretical assessment.

In this task, we have explored various data sources that can supplement an energy performance certificate (EPC) and related aspects which can influence the feasibility of including such data in EPC assessments. Hereto, the following elements are elaborated in the inventory of data variables (section 2) and the literature review (section 3):

- 1. Inventory of data variables (section 2)
  - The nature of data available on individual building energy use (section 2.1)
  - The accessibility of the data for the use within EPC schemes, including an exploration of (energy) databases availability (section 2.2)
  - Identification (measurement) and post-processing methods (section 2.3)
- 2. Literature review regarding the impact of incorporating the data into the EPC methodology (section 3)
  - Identification of the uncertainty in building performance analyses (section 3.1)
  - Identification of the impact of occupant behaviour (section 3.2)
  - Incorporation of measurement data in the EPC assessment (section 3.3)

To build the inventory of data variables, we started from a wide perspective and listed all possible data variables that can be monitored, controlled and estimated in a building. This resulted in a spreadsheet (see the Annex of this report) including 175 data variables, related to the building geometry, building envelope, boundary conditions, occupant behaviour, HVAC systems and energy performance. The resulting data variables were then aligned with other ePANACEA tasks that elaborated on the EPC inputs (tasks T2.3 *"Linking EPC and Smart Readiness Indicator"* and T2.5 *"Linking EPCs with building passports and roadmaps"*). However, this deliverable mainly focuses on the "measured/calculated" data variables, while ePANACEA tasks T2.3 and T2.5 list all inputs of the EPC methodology.

After the full inventory of data has been established, we have focused on two categories of data inputs: (1) measurable varying data variables and (2) measurable fixed data variables to supplement or replace EPC inputs – as will be explained in the next chapter.



## 2. INVENTORY OF DATA VARIABLES

The complete list of data summarized in the spreadsheet (see the Annex of this report) was categorized into four categories:

- 1. **Measurable varying data variables to supplement or replace EPC inputs.** These data variables are measured as a time series and vary in time (e.g. consumption data). The data frequency can range from detailed minute-data to aggregated daily or even yearly data.
- 2. Fixed data variables to supplement or replace EPC inputs. These data variables can only be identified once, because they are constant or follow a repetitive pattern. Examples of these variables are aspects of the building envelope (e.g. air tightness or measured U-values), or variables that quantify user behaviour (set points and schedules).
- 3. Data variables that cannot be used to improve the current EPC. These data variables are relevant for EPC calculations, but cannot be elaborated or monitored in detail. These variables are for instance some aspects of the building geometry (e.g. surface areas, thickness of materials, etc.) or the HVAC system (e.g. system type, boiler volume, etc.).
- 4. Data variables that are considered to be out of scope or overlap with other variables. These are detailed variables that are used typically in more detailed simulations (dynamic simulations), but are considered to be out of scope for the identification of a static building performance (e.g. single control units).

In this report, the data variables of the first two categories are prioritized. Since the aim is to explore data sources that can be incorporated in the EPC assessment, the latter two categories are disregarded. Three topics are discussed: (1) the nature of the data, (2) the data accessibility and (3) identification and normalization methods.

## 2.1. Nature of data

The nature of data variables can be discussed from different perspectives:

- 1. The **type** of the data variables can be discussed. Hereto, four main groups of data types are defined in this task: (1) building envelope, (2) boundary conditions and occupant behaviour, (3) HVAC systems and (4) energy efficiency. For each type of data, a list of parameters is established, which are each quantified by means of the data variables.
- 2. The nature of the data can be discussed according to the units and frequency.
- 3. Third, the data can be specified as a **varying or a fixed variable**.

The data types and corresponding parameters identified in this task are summarized in Figure 1. These data types are now further elaborated, discussing their nature in detail. It is emphasized that the discussed data variables are only the ones that can be measured and that can be incorporated in or supplemented to the EPC.

| Type       | Building envelope                                                                                                      | Boundary conditions<br>and occupant behaviour                                                                                                                                                                     | HVAC systems                                                                                                                                                                                                                         | Energy efficiency                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Parameters | <ul> <li>Opaque building<br/>components</li> <li>Transparent building<br/>components</li> <li>Air tightness</li> </ul> | <ul> <li>Outdoor climate</li> <li>Occupants</li> <li>Setpoints for a zone or a building</li> <li>Building control</li> <li>Indoor climate</li> <li>Domestic hot water use</li> <li>Domestic energy use</li> </ul> | <ul> <li>Air handling unit</li> <li>Building zone</li> <li>DHW system</li> <li>Space heating system</li> <li>Space cooling system</li> <li>Photovoltaic system</li> <li>Solar thermal system</li> <li>Distribution system</li> </ul> | <ul> <li>Energy need</li> <li>Energy use</li> <li>On-site renewable<br/>energy system</li> </ul> |

Figure 1: Summary of data types and corresponding parameters (Source: VITO)



#### 2.1.1. Building envelope

The data variables regarding the building envelope, which can be measured and incorporated in the EPC, are summarized in Table 1. The table shows that data variables that quantify the building envelope are identified from measurements as fixed variables. This is a simplification of reality, as the data variables listed in Table 1 are only constant in stationary conditions, for a building with constant boundary conditions (indoor temperature, outdoor climate...). However, measuring the variation of the data variables in time is almost impossible, as the gathered data needs to be processed before the data variable can be identified. As an alternative, the variation of the data variables in time can be simulated, like the infiltration rate that varies with the wind pressure and thermal stack effect.

| Parameter                       | Data variable                                                          | Unit                                       | Nature |
|---------------------------------|------------------------------------------------------------------------|--------------------------------------------|--------|
| Opaque building components      | Coefficient of total linear thermal transmittance, $\boldsymbol{\Psi}$ | W/K                                        | Fixed  |
| Opaque building components      | Thermal transmittance, U-value                                         | W/(m²K)                                    | Fixed  |
| Transparent building components | g-value                                                                | -                                          | Fixed  |
| Transparent building components | Thermal transmittance, U-value                                         | W/(m²K)                                    | Fixed  |
| Air tightness                   | Infiltration air change of the building                                | 1/h or m <sup>3</sup> /(h.m <sup>2</sup> ) | Fixed  |



#### 2.1.2. Boundary Conditions and Occupant Behaviour

The data variables regarding the boundary conditions and occupant behaviour, which can be measured and incorporated in the EPC, are summarized in Table 2. Of course, all measured data variables regarding the outdoor climate are varying in time, but regarding the occupant behaviour, it depends on the parameter:

- All data variables that quantify the occupants and the setpoints are considered to be fixed, except for the number of occupants, which can vary in time when it is logged with presence sensors. Although setpoints can vary during the day, they are also considered to be fixed, as their variation can be captured in a repetitive schedule.
- All measured temperatures are varying in time.
- All remaining data variables can be fixed or varying, depending on the identification method. When the data variable is queried by means of a questionnaire, repetitive schedules are obtained, which are considered to be fixed. When the data variable is continuously measured by means of sensors, it is varying in time.

| Parameter               | Data variable                            | Unit                | Nature           |
|-------------------------|------------------------------------------|---------------------|------------------|
| Outdoor climate         | Temperature, solar radiation, wind, rain | °C, °, mm,<br>W/m², | Varying          |
| Occupants               | Activity level per occupant              | met                 | Fixed            |
| Occupants               | Number of occupants                      | -                   | Fixed or varying |
| Occupants               | Type of occupants                        | -                   | Fixed            |
| Setpoints for a zone or | Gross heated/cooled volume               | -                   | Fixed            |



| Parameter                        | Data variable                                                         | Unit          | Nature              |
|----------------------------------|-----------------------------------------------------------------------|---------------|---------------------|
| building                         |                                                                       |               |                     |
| Setpoints for a zone or building | Heating set point (schedule)                                          | °C            | Fixed               |
| Setpoints for a zone or building | Cooling set point (schedule)                                          | °C            | Fixed               |
| Setpoints for a zone or building | Maximum CO2-level of the zone when CO2-controlled ventilation, in ppm | ppm           | Fixed               |
| Setpoints for a zone or building | Maximum RH of the zone when RH-controlled ventilation, in $\%$        | %             | Fixed               |
| Setpoints for a zone or building | Schedule of the room unit, e.g. fireplace 2 h in the evenings         | schedule      | Fixed               |
| Building control                 | Blind control                                                         | -             | Fixed or<br>varying |
| Indoor climate                   | Indoor comfort: Indoor Temperature                                    | °C            | Varying             |
| Indoor climate                   | Temperature in neighbouring zones                                     | °C            | Varying             |
| Domestic hot water use           | Use of hot water                                                      | Liters        | Fixed or varying    |
| Domestic energy use              | Cooking                                                               | Mins/day or W | Fixed or<br>varying |
| Domestic energy use              | Big energy consumers (pool, hot tub, sauna, EV)                       | Use/week or W | Fixed or varying    |
| Domestic energy use              | Use of dishwashers, washing machines and dryers                       | Use/week or W | Fixed or varying    |
| Domestic energy use              | Use of lighting                                                       | Mins/day or W | Fixed or varying    |

Table 2: Data variables regarding boundary conditions and occupant behaviour

#### 2.1.3. HVAC systems

The data variables regarding the HVAC systems, which can be measured and incorporated in the EPC, are summarized in Table 3. Most of the variables, such as efficiencies, power consumptions, capacities or air flows, are varying in time (i.e. not constant over a time period) when they are measured. The remaining data variables are fixed. These include system specifications such as the angle, orientation and surface area of solar panels, the type of distribution system or the constant thermal losses of a DHW system. It is emphasized that the efficiency of a system cannot be measured directly, but should be derived from the measurements as a ratio between the input and the output of the system.

Parameter Data variable Unit Nature



| Parameter               | Data variable                                                                               | Unit      | Nature  |
|-------------------------|---------------------------------------------------------------------------------------------|-----------|---------|
| Air Handling unit       | Exhaust air heat recovery efficiency (0-1)                                                  | -         | Varying |
| Air Handling unit       | Specific power consumption in kW/(m3/s)                                                     | kW/(m3/s) | Varying |
| Air Handling unit       | Heating capacity of the AHU                                                                 | W         | Varying |
| Air Handling unit       | Cooling capacity of the AHU (sensible + latent)                                             | W         | Varying |
| Building zone           | Return air flow of the zone                                                                 | L/(s m²)  | Varying |
| Building zone           | Supply air flow of the zone                                                                 | L/(s m²)  | Varying |
| Building zone           | Nominal power of the room unit                                                              | W         | Varying |
| Building zone           | Efficiency of the room unit using selected carrier, e.g stove 0.8, heat pump 3.0            | -         | Varying |
| DHW system              | Hot water system constant thermal losses, circulation, storage tanks                        | kWh/(m²a) | Fixed   |
| DHW system              | Hot water system heat recovery efficiency                                                   | -         | Varying |
| DHW system              | Temperature of the cold domestic water                                                      | °C        | Varying |
| DHW system              | Supply temperature of the domestic hot water from the plant (hot water to showers and taps) | °C        | Varying |
| DHW system              | Overall efficiency of the domestic hot water heating system                                 | -         | Varying |
| DHW system              | Capacity of the space DHW heating system                                                    | W         | Varying |
| Space heating<br>system | Overall efficiency of the space heating system                                              | -         | Varying |
| Space heating system    | Capacity of the space heating system                                                        | W         | Varying |
| Space cooling<br>system | Overall efficiency of the cooling system                                                    | -         | Varying |
| Space cooling<br>system | Capacity of the cooling system                                                              | W         | Varying |
| Photovoltaic<br>system  | The capacity of the battery system related to the RES electricity production                | kWh       | Varying |
| Photovoltaic<br>system  | PV capacity                                                                                 | kW        | Varying |
| Photovoltaic<br>system  | Efficiency of the PV system                                                                 | -         | Varying |
| Photovoltaic<br>system  | Azimuth orientation (-90° is E, 0° is S, 90° is W)                                          | 0         | Fixed   |



| Parameter               | Data variable                                                                                     | Unit | Nature  |
|-------------------------|---------------------------------------------------------------------------------------------------|------|---------|
| Photovoltaic<br>system  | Slope, the angle of the PV modules from the horizontal plane, 0 deg = horiz., 90 deg = Vertical   | 0    | Fixed   |
| Solar thermal<br>system | Nominal zero loss efficiency with the temp diff zero, related to the reference area (0-1)         | -    | Varying |
| Solar thermal<br>system | Azimuth orientation (-90° is E, 0° is S, 90° is W)                                                | 0    | Fixed   |
| Solar thermal<br>system | Reference area of the collector                                                                   | m²   | Fixed   |
| Solar thermal<br>system | Slope, the angle of the PV modules from the horizontal plane, 0 deg = horiz., 90 deg = Vertical   | •    | Fixed   |
| Distribution<br>System  | Supply temperature of the radiator, fan coils etc room systems in the design point                | °C   | Varying |
| Distribution<br>System  | Return temperature of the radiator, fan coils etc room systems in the design point                | °C   | Varying |
| Distribution<br>System  | Room Emission Type: Radiator, FanCoil, FloorHeating, FloorCooling, CeilingHeating, CeilingCooling | -    | Fixed   |
| Distribution<br>System  | Room Emission Control Type: Manual, ThermostaticValve, PIControl                                  | -    | Fixed   |
| Distribution<br>System  | Pump efficiency of the hydronic distribution pumps (heating, cooling, radiators, AHU loop)        | -    | Varying |

Table 3: Data variables regarding the HVAC systems

#### 2.1.4. Energy Efficiency

The data variables regarding the energy efficiency, which can be measured and incorporated in the EPC, are summarized in Table 4. All these variables are varying in time, and are influenced by amongst others boundary conditions, building quality and occupant behaviour.

| Parameter  | Data variable                                            | Unit            | Nature  |
|------------|----------------------------------------------------------|-----------------|---------|
| Energy use | Use of fossil fuels (for heating, cooling and hot water) | m3, litres, kWh | Varying |
| Energy use | Total Electricity use                                    | kWh             | Varying |
| Energy use | Electricity use for heating                              | kWh             | Varying |
| Energy use | Electricity use for cooling                              | kWh             | Varying |
| Energy use | Electricity use for EV                                   | kWh             | Varying |

| Parameter   | Data variable                    | Unit | Nature  |
|-------------|----------------------------------|------|---------|
| Energy use  | Electricity use for lighting     | kWh  | Varying |
| Energy use  | Electricity use for non-EPB uses | kWh  | Varying |
| Energy use  | Electricity use for DHW          | kWh  | Varying |
| On-site RES | On-site electricity production   | kWh  | Varying |
| On-site RES | Exported electricity             | kWh  | Varying |

Table 4: Data variables regarding the energy efficiency

## 2.2. Data accessibility

Data gathered in buildings are often not accessible, because a lot of stakeholders are involved and privacy sensitivity of the data. The following paragraphs elaborate on data accessibility, and how it varies per data type. The link is made between measurements and the GDPR.

#### 2.2.1. Ownership and privacy sensitivity

Different stakeholders are involved when a building is monitored, so often co-ownership between different parties occurs:

- Inhabitants (either owners or tenants) have co-ownership of all the data that are gathered.
- Engineering companies, architectural firms, installers, contractors and manufacturers have co-ownership of the data that are gathered regarding their product. For instance, a contractor has co-ownership of all data that is gathered on the rough construction (building envelope), while manufacturers have co-ownership of data regarding their HVAC systems of which the efficiency and performance are monitored.
- Utility companies have co-ownership of the energy use data that are gathered from their database or meters.
- **Operation & maintenance (O&M) companies** have co-ownership over all data regarding building automation and control systems that they service.
- Energy auditors have co-ownership of all data that is gathered with their equipment.
- **Research institutes** often perform more complex monitoring campaigns in their personal interest, with a large number of sensors (e.g. monitoring of the complete indoor environmental quality) or with a complex post-processing procedure (e.g. in-situ measured U-values of building components).

In addition to the different stakeholders that can be involved, data can be personal or non-personal, with different degrees of privacy sensitivity. The general data accessibility per data type is summarized in Table 5. Three levels of data accessibility can be identified. First, all data regarding the building envelope and boundary conditions is non-personal with a low privacy sensitivity because these data, such as building material characteristics and weather data, are often openly available. Second, all data variables of occupant behaviour and energy efficiency at personal/individual level are classified as personal data with high privacy sensitivity because private habits and preferences can easily be derived from these data. However, if the private data are aggregated (e.g. street level energy consumption) or anonymous (e.g. anonymous address), these are even publicly available, thus considered as low sensitivity. Some examples can be found in 2.2.2.3. Third, data variables that specify the HVAC systems are non-personal with a varying privacy sensitivity. For inhabitants, the efficiency of the HVAC is only of small interest, but for manufacturers, this can be confidential data that quantifies the performance of the system they developed. Also

for O&M companies, this data has a high privacy sensitivity, as it can reveal operational deficiencies or shortcomings regarding the maintenance of the system.

| Data type                             | Stakeholders involved                                                                                                    | Personal or<br>non-personal | Privacy<br>sensitivity |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|
| Building envelope                     | Inhabitants, engineering companies, architectural firms, installers, contractors, energy auditors, (research institutes) | Non-personal                | Low                    |
| Boundary conditions (outdoor climate) | Utility companies, (research institutes)                                                                                 | Non-personal                | Low                    |
| Occupant behaviour                    | Inhabitants, O&M companies, (research institutes)                                                                        | Personal                    | High                   |
| HVAC systems                          | Inhabitants, O&M companies, manufacturers, (research institutes)                                                         | Non-personal                | Low/high               |
| Energy efficiency                     | Inhabitants, utility companies, energy auditors, (research institutes)                                                   | Personal                    | Low/High               |

Table 5: Data accessibility: stakeholders and privacy sensitivity

#### 2.2.2. Exploration of (energy) databases availability and their use in EPCs

The task team has carried out a mapping exercise to explore databases availability and their potential use in supplementing or replacing input parameters in EPC calculation.

#### 2.2.2.1. Climate profiles:

In EPC calculation, a set of default climate profiles are often used. Additional climatic data sources are useful in updating or validating the default climate profile.

- <u>JRC TMY data (https://ec.europa.eu/jrc/en/pvgis)</u>: the dataset with free and open access contains a Typical Meteorological Year (TMY) of data, which is produced by choosing for each month the most "typical" month out of 10 years of data. The variables used to select the typical month are global horizontal irradiance, air temperature, and relative humidity. The data can be incorporated as the climate profile into EPC calculation.
- <u>EnergyPlus weather data (https://energyplus.net/weather)</u>: similar to the above data source, the climatic data can be used for refinement of the EPC inputs (temperature, solar radiation).
- Hourly data for temperature and irradiance per country (https://data.open-power-system-data.org/weather\_data/2020-09-16): open and free access to population-weighted mean across all MERRA-2 grid cells within the given country
- <u>Heating/Cooling degree days dataset (https://ec.europa.eu/eurostat/web/energy/data/database)</u>: the open Eurostatdataset contains annual and monthly heating/cooling degree days in EU countries, which can be used for normalization of energy performance.

#### 2.2.2.2. Building geometry:

Building geometry database can potentially serve as a first step to retrieve geometrical parameters. Building geometry database: under the initiative of INSPIRE, various geometrical datasets are publicly available in different countries, which can be used as additional geometrical input of EPC calculation.
 <a href="https://data.opendataportal.at/dataset">https://data.opendataportal.at/dataset</a>
 <a href="https://data.opendataportal.at/dataset">https://data.opendataportal.at/dataset</a>

https://www.planlaufterrain.com/LiDAR-Data-and-FAQ/



 Building Typologies: TABULA project developed national building typologies representing the residential building stock of several countries, which provides an overview of the typical building characteristics (in combination with the construction period), such as U-value and infiltration rate. <u>https://episcope.eu/building-typology/country/</u> <u>https://webtool.building-typology.eu/#bm</u>

#### 2.2.2.3. User profile (Actual energy consumption data):

User profile related energy consumption data can be directly used to correct/calibrate input parameters in the EPC calculations and reduce the energy performance gap which further increases the accuracy of EPC calculation results.

- <u>The actual energy consumption (electricity and natural gas) profiles of Belgian households</u> (<u>https://www.fluvius.be/nl/thema/open-data</u>): in combination with climate profiles, the dataset can be used to derive typical user profiles and building characteristics.
- <u>Representative electrical load profiles of residential buildings in Germany (https://fs-cloud.f1.htw-berlin.de/s/wZZQKdupnJd8wmH)</u> with a temporal resolution of one second
- <u>Actual aggregated energy consumption data (https://www.fluvius.be/nl/thema/open-data)</u>: the aggregated energy consumption data can be used to derive the actual energy performance at building level, or to calculate the average energy performance of the building type for benchmarking purpose.
- <u>Electricity consumption and PV generation for small business and residential households (https://data.open-power-system-data.org/household\_data/2020-04-15)</u>

#### 2.2.2.4. Other relevant data

There are many other relevant data sources that can be used to supplement or replace EPC inputs. A few open data sources of solar energy are given as examples:

- <u>PV data (https://ec.europa.eu/jrc/en/pvgis)</u>: the dataset contains monthly average/daily/hourly solar radiation.
- <u>Solar map 'Zonnekaart' (https://www.energiesparen.be/zonnekaart)</u>: the dataset gives an assessment of the potential for solar panels and solar collectors on all roofs in Flanders
- <u>Solardachkataster</u> <u>Steiermark</u> (https://www.data.gv.at/katalog/dataset/7c3cbfc9-b8fa-43e1-941e-2d93b65c2720):</u> Potential surfaces for thermal solar systems on roofs in Austrian region Styria (basically available for all Austrian region, partly even more renewable potentials)

Besides, a research was performed on the projects part of EU H2020 funded calls DT-ICT-10-2018 and DT-ICT-11-2019, resulting in the following list of projects:

- Big Data for OPen innovation Energy Marketplace <a href="https://cordis.europa.eu/project/id/872525">https://cordis.europa.eu/project/id/872525</a>
- Digital PLAtform and analytic TOOIs for eNergy <a href="https://cordis.europa.eu/project/id/872592">https://cordis.europa.eu/project/id/872592</a>
- Big Energy Data Value Creation within SYNergetic enERGY-as-a-service Applications through trusted multi-party data sharing over an AI big data analytics marketplace <a href="https://cordis.europa.eu/project/id/872734">https://cordis.europa.eu/project/id/872734</a>
- Interoperable Solutions Connecting Smart Homes, Buildings and Grids <a href="https://cordis.europa.eu/project/id/857237">https://cordis.europa.eu/project/id/857237</a>
- BD4NRG: Big Data for Next Generation Energy <a href="https://cordis.europa.eu/project/id/872613">https://cordis.europa.eu/project/id/872613</a>

However, no relevant links were found with the aim of this deliverable.

## 2.3. Identification and post-processing methods

To identify the previously discussed data variables, some acquisition and post-processing methods need to be applied. However, each method comes with a level of complexity and accuracy, as is discussed below.

#### 2.3.1. Acquisition

Different levels of complexity can be defined for the acquisition of data.

- When the building is ready for measurements and no effort is required to access the data, the acquisition complexity is low. This is the case when data can be gathered without visiting the building e.g. from a database or the government. Only for new or recently-renovated buildings equipped with a building monitoring system (BMS), the acquisition complexity is low.
- When the building is ready for measurements, but extra effort is required to access the data, the acquisition complexity is of a medium level. This is the case for buildings that are equipped with a building automation and control system (BACS) which does not automatically store the measured data.
- When a building is not ready for measurements, and no sensors or BACS are available to extract the data from, the acquisition complexity is high. At the moment, the largest share of buildings have a high acquisition complexity, but this is expected to decrease in the next upcoming years, as the EU strongly encourages and imposes the installation of smart meters.

The acquisition complexity can strongly vary per data type. For instance, for a building that is only equipped with smart meters that monitor the energy use, the acquisition complexity of the energy use is low, while for other aspects the complexity is high. Furthermore, different acquisition techniques can be used to gather data. This is summarized in Table 6 per data type.

| Data type           | Acquisition method                                                                      | Acquisition<br>complexity | Accuracy |
|---------------------|-----------------------------------------------------------------------------------------|---------------------------|----------|
| Building envelope   | Estimations or advanced simulations based on plans, technical information and standards | Low                       | Low      |
|                     | In-situ measurements (additional sensors)                                               | High                      | High     |
| Boundary conditions | Gathered from database                                                                  | Low                       | High     |
| (outdoor chinate)   | In-situ measurements (additional sensors)                                               | High                      | High     |
| Occupant behaviour  | Schedules and habits derived from questionnaire                                         | Medium                    | Low      |
|                     | In-situ measurements (additional sensors)                                               | High                      | High     |
|                     | In-situ measurements (BMS)                                                              | Low                       | High     |
| HVAC systems        | In-situ measurements (additional sensors)                                               | High                      | High     |
|                     | In-situ measurements (BMS)                                                              | Low                       | High     |
| Energy efficiency   | Gathered from energy invoices                                                           | Low                       | Low      |
|                     | In-situ measurements (additional sensors)                                               | High                      | High     |
|                     | In-situ measurements (smart meters)                                                     | Low                       | High     |

#### Table 6: Data acquisition: methods, complexity and accuracy

Two acquisition methods have a low acquisition complexity as well as accuracy: estimations/simulations and energy invoices. The advantage is that the building does not have to be visited, but the disadvantage is that these methods results in a low accuracy (or when advanced simulation techniques with high accuracy are applied, it is difficult to verify and calibrate them). Three methods have a low acquisition complexity, but a high accuracy: gathering the data from a database, a BMS or smart meters. However, as BMSs or smart meters are not yet the state of the art, these acquisition methods cannot be applied frequently. Finally, adding additional sensors to an existing building results in data of high accuracy, but the acquisition complexity is high, as it requires a lot of effort to install and maintain the sensors, and to log the data.

#### 2.3.2. Post-processing measured data

#### 2.3.2.1. Time-series data

Measured (or monitoring) data are often collected as a time-series with a certain interval or frequency. Four post-processing methods need to be applied to these time-series data before they can be used in an analysis:

- 1. **Check for missing values**: these values can be omitted, or the gaps can be filled by interpolation methods or predictions.
- 2. Check for abnormal values: often referred as outliers (mild or extreme ones) and errors (due to faults in devices), and can be omitted from the data.
- 3. Resample to the desired frequency: it is often necessary to resample the time-series data to a lower or higher frequency. Resampling to a lower frequency (down-sampling) often involves an aggregation operation for example, computing daily energy consumption data from hourly data. Resampling to a higher frequency (up-sampling) often involves interpolation or other data filling methods for example, interpolating hourly weather data to 15 minute intervals for input to a model.
- 4. **Harmonisation, i.e. making the data interoperable and consistent:** the measured data should be processed to the desired timeframe, and data from different sensors needs to be brought together.

#### 2.3.2.2. Building envelope data

The **air infiltration rate** of a building can be identified by means of a fan pressurization test, following the national standard NBN EN 13829. To this end, an indoor-outdoor pressure difference of 50 Pascal is created across the building envelope by placing an air fan in an exterior doorway. The air flow rate that must be generated to maintain the pressure difference then represents the air leakage rate of the building at 50 Pa ( $V_{so}$  in m<sup>3</sup>/h). As a rule of thumb, the air leakage rate of the building at 50 Pa is divided by a value between 10 and 30 to obtain the air leakage rate of the building ( $G_{se}$  in m<sup>3</sup>/s) in regular conditions, with an average pressure difference of 2 Pa. Besides the air leakage rate  $V_{so}$ , the air change rate  $n_{so}$  (1/h) and the air permeability  $q_{so}$  (m<sup>3</sup>/(h.m<sup>2</sup>)) at 50 Pa indoor-outdoor pressure difference are also often used to describe the air tightness of a building.

The **thermal resistance** R of a building component can be calculated following the European standard NBN EN ISO 6946:2007, but it can also be identified by means of the heat flow meter method, as described in the international standard ISO 9869. To this end, the heat flow through the building component (q in W/m<sup>2</sup>) is measured with a heat flow meter, which is placed on the interior surface of the building component. Additionally, the interior and exterior surface temperatures are measured ( $T_{si}$  and  $T_{so}$ ). To deduce the thermal resistance from these three parameters, several methods can be applied such as the average method, simple linear regression or an ARX model (Deconinck 2016).

#### 2.3.2.3. Normalization of energy use data

Before data regarding the energy use of a building can be used, it needs to be normalized for the indoor and outdoor climate of a building. Otherwise, the energy uses of different buildings cannot be mutually compared, since both occupant heating behaviour and climate conditions can have a significant impact on the energy use. For instance, it is unfair to compare the

energy use of a building in the cold climate of Finland to that of a building in the warm climate in Spain without accounting for the strongly differing outdoor climate.

The heating degree method is the most frequently applied method to normalize the energy use for space heating and similarly, the cooling degree day method is used to normalize the energy use for space cooling. Heating or cooling degree days quantify the climate conditions as the sum of the indoor-outdoor temperature difference for the days that have a heating or a cooling demand respectively. However, several variations of the method exist, taking into account different temperatures, gains, thresholds to define heating and cooling days etc.

# 3. LITERATURE REVIEW: IMPACT OF INCORPORATING THE DATA IN THE EPC

A literature review was performed to gain insight in the impact that the incorporation of data can have on the EPC. The sensitivity of the EPC score, or more specifically the primary energy use of the building, is explored.

Hereto, we first explore the uncertainty of building performance analyses in general, and which types of data can have an impact on this uncertainty. Second, we zoom in on the impact of occupant behaviour, since it was found in literature that this is one of the most important factors that influences building energy performance analyses. Third, we make a short reflection, using the findings from literature, on how to incorporate measurement data in the EPC assessment and what the expected impact will be.

## 3.1. Uncertainty in building performance analyses

Tian et al. (Tian et al. 2018) explored the main sources of uncertainty in building performance analysis, stating the following conclusions regarding different types of data:

- 1. <u>Weather data</u>: In building energy simulation, a typical meteorological year is used. However, building performance is affected by future climate, not by historical weather conditions.
- <u>Building envelope</u>: Parameters related to building envelope can be categorized into three types: thermal properties (i.e. density and specific heat capacity), surface properties (i.e. solar absorptance and emittance) and other parameters (such as infiltration rate, thermal bridges, convective heat transfer coefficient and thickness of materials).
- <u>HVAC systems</u>: Building energy analysis usually assumes that HVAC systems operate in ideal conditions. However, the actual performance of HVAC system is affected by several factors, such as oversizing, ageing, maintenance, usual wear and tear.
- 4. <u>Occupant behaviour</u>: Occupant behaviour implies the major uncertainty source that can conduct up to 30% of variation in building energy performance according to Eguaras-Martínez et al (Eguaras-Martínez et al. 2014). Most building energy simulation programs use deterministic models for the variables associated to occupant behaviour (i.e. fixed schedules for occupancy, lighting use, plug loads, cooling/heating set-points, etc.). However, this approach, easy to implement, do not represent the complex stochastic nature of human behaviour or its interaction with the building.

To cope with these uncertainties, energy performance models can be calibrated. Measured calibration data, depending on objectives, may include:

- The total energy consumption of the building (kWh)
- Heating and cooling energy consumption (kWh)
- Electricity consumption (kWh)
- Zone temperature (°C)
- Relative humidity (%)

High quality input data gathered from on-site measurements and/or monitoring data (e.g. BMS or sensor data) will allow high accurate calibrated models with lower computational costs due to lower uncertainty of input parameters, thus lower variations and then a less number of iterations required (i.e. number of simulations). Calibrated simulation in the context of EPCs implies then real-time measurements or monitoring when the modelling phase is in progress. According to Sözer (Sözer et al. 2019), based on short (approximately one month) data, the whole heating season data could be predicted with an acceptable level of accuracy.



Moreover, calibrated energy performance models facilitate a baseline representation of existing buildings performance patterns (Gucyeter 2018). Hence, further accuracy in diagnosis, operation and energy conservation measures (ECMs) become possible through the use of calibrated models. Including this approach in EPCs will allow an increase of market trust on EPCs and support renovation strategies for the current building stock.

## 3.2. Impact of occupant behaviour

Occupant behaviour is no doubt one of the major factors influencing building energy consumption and contributing to uncertainty in building energy use prediction and simulation. Occupant behaviour plays a crucial role in assessing the building energy performance and closing the gap between actual measured and theoretical values. Currently the understanding of occupant behaviour is insufficient both in building design, operation and retrofit (Tianzhen H. et al., 2016).

The impact of occupant behaviour is mostly quantified in more complex dynamic simulation models. One study (Kaiyu S., Tianzhen H., 2017) introduced a simulation approach to estimate the potential energy savings of occupant behaviour measures. The five behaviour measures include lighting, plug load, comfort criteria, HVAC control, and window control. The simulation results of an office building show the accurate occupant behaviour measures can achieve considerable energy savings as high as 22.9% for individual measures and up to 41.0% for the integrated measures. In addition, quantifying the savings from occupant behaviour remains a primary challenge. For behaviour-related energy savings an estimated savings of 10% to 20% for residential and 5% to 30% for commercial buildings (i.e. private offices) was achieved (Tianzhen H. et.al, 2016). Another study (Paliouras, P. et.al, 2015) states that occupant behaviour primarily contributes to the uncertainty of building energy simulations because the occupants interact in a highly stochastic manner with the building. Therefore, the authors suggest that probabilistic methods should be used instead of deterministic models for modelling the user behaviour to increase accuracy of results. Such probabilistic methods to model occupant behaviour were also elaborated by the work of Deurinck (Deurinck M. 2015).

Although multiple studies showed the importance of occupant behaviour, in (most of) the current EPC calculation methods, actual user behaviour related aspects and parameters are often not taken into account.

One study in Wallonia, Belgium (Monfils S., Hauglustaine J.-M., 2016), concludes that the gap between theoretical and real consumptions (margins decrease more than half) can be partially closed by introducing behavioural parameters (e.g. heating habits, DHW needs, ventilation habits, actual internal loads and consumption data) into the EPC steady-state calculation method. Hereto, the study replaces some standardized occupant-related inputs of the EPC-method by real-use values, obtained by a questionnaire. However, the number of questions in that questionnaire has to be limited to ensure sufficient understanding and attention of respondents, as well as the reliability in their answers.

It is concluded in the Swedish case study of QUALICHECK project (Pär J. et al.) that the variations on energy use caused by the occupants' behaviour is often underestimated in energy use calculations. In single-family houses, differences in the occupant behaviour can account for up to 50% of the building's energy use. In low energy houses the variation of the occupants' behaviour has a larger relative impact on the energy use than for buildings with higher energy use. It is assessed that hot water consumption, airing and indoor air temperature are three aspects that have the major impact on energy use. In single-family houses, the measured EPC is very much affected by the behaviour of the group/family living in the house. In multifamily buildings, the dispersion will be smaller since some apartments have lower energy use (e.g. use less hot water) and some have higher. It is important to use the correct heated floor area and attribute the energy use to its correct demand and supply in the calculations. Another Swedish study (Mikael M. et al.) further investigated the importance of the correct building heated floor area and normalization and attribution of the measured energy use.

A UK study (Jain N., et al) investigated the performance gap, using calibrated simulation and measurement data for four new different building types - office, school, hospital and apartment block. It is shown that the influence of the user behaviour on the performance gap increases with degree of operational control.



BIM4EEB project (Teemu V. et al.) concludes that the effect of the input data depends on the prevailing weather conditions and the archetypes of the buildings. The heating and cooling set-points and the air ventilation rates are the most influential parameters on the building's energy consumption. Besides, in cold weathers, main effects on the heating load come from the solar gains through the glazing, building envelope parameters of the window U-value, window g-value, wall conductivity and the heaviness of the building's structure. In hot weathers, the cooling load is mainly affected by the internal heat gains from the occupant's behaviour.

A sensitivity analysis, carried out in Dutch dwellings (Daša M. et.al, 2013), has clearly shown that the average indoor temperature has a major influence on the theoretical gas consumption together with the ventilation rate. The number of occupants together with internal heat load also have a limited impact on theoretical gas consumption. Another sensitivity analysis (loannou A., Itard L.C.M., 2015) also proves that the effect of behavioural parameters (such as thermostat use and ventilation flow rate) dominate over the effect of building related ones in energy performance, but also play an important role in thermal comfort.

### 3.3. Incorporating measurement data in the EPC assessment

Figure 2 illustrates three possible options to incorporate measurement data in the EPC methodology:

- 1. Theoretical inputs that are already included in the current method can be replaced by the average measured values,
- 2. New inputs can be added to the current EPC methodology, which requires a revision of the current method,
- 3. Or the EPC-score can be derived from measured energy uses, but then a new methodology needs to be developed.



Figure 2: Three ways of incorporating data in the EPC methodology (Source: prepared by VITO)

As the figure shows, the aim of this deliverable is to explore the additional data that can be incorporated in three ways, while in ePANACEA work package 4 "*Method development*" the aim is to develop a holistic, accurate, flexible and modular methodology for EPCs, based on three assessment methods.

The first option mostly relates to measurement data regarding the building envelope, weather conditions and HVAC systems. Because the theoretical specifications of these aspects are already incorporated in the EPC methodology for the major part, it might be rather easy to replace these theoretical inputs by the measured values. This leads to a significant improvement and yields an EPC assessment that is a better representation of reality. However, it should be emphasized that the current EPC methodology remains unchanged, so most probably (quasi-)steady-state calculations are used (depending on the country).



Previous literature review (section 3.2) indicated that occupant behaviour is one of the major factors influencing building energy consumption. However, the EPC assessment in most countries only considers average occupant behaviour, often with a constant indoor temperature and a fixed heated volume. Therefore, measurement data that quantifies occupant behaviour should be incorporated by means of the second option shown on figure 2: new inputs need to be added to the current EPC methodology. Such new inputs can be average or dynamic inputs such as the measured indoor temperature per zone, schedules of the presence of the occupants, ventilation behaviour etc. Based on the literature review in section 3.2 we might expect that incorporating new inputs regarding the occupant behaviour into the EPC methodology might have a significant impact and lead to an EPC assessment that is again closer to reality. However, since occupant behaviour is very case-specific, it can be a fair approach to include a sensitivity analysis, or perform the EPC assessment for different scenarios of occupant behaviour.

The third option is to use the energy use in a new methodology to characterize the energy performance by means of a new indicator. This new indicator is expected to strongly differ from the EPC-score because of the energy performance gap (which is larger for energy-intensive dwellings) and can be used to supplement or replace the current EPC assessment. The normalization of the energy use, and other methods to identify the energy performance using measurement data are further elaborated in ePANACEA task T4.1 "Smart & performance data-driven building energy performance assessment".

## 4. CONCLUSIONS

Different data sources that can be relevant to an energy performance certificate (EPC) are explored with a scoping analysis. Hereto, we started from a large set of 175 data variables, summarized in a spreadsheet (see the Annex of this report), which are related to the building geometry, building envelope, boundary conditions, occupant behaviour, HVAC systems and energy performance. Next, we categorized all these variables into four types:

- Measurable, varying data variables to supplement or replace EPC inputs.
- Fixed data variables to supplement or replace EPC inputs.
- Data variables that cannot be used to improve the current EPC.
- Data variables that are considered to be out of scope or overlap with other variables.

Subsequently, we narrowed down the scope to the first two categories, since the aim of this deliverable is to explore various data sources that can supplement an energy performance certificate (EPC). The selected data variables are further analysed via their nature and accessibility, as well as their post-processing methods. In relation to the nature, the unit and related building parameter was defined per data variable and additionally, the nature was indicated as fixed (for constant or repetitive variables) or varying (for time-dependent variables). To evaluate the accessibility, the privacy sensitivity of the data variables was indicated, which strongly depends on the aggregation level and accuracy of the data. Moreover, (energy) data bases which contain relevant information that can be used as an input to EPC assessments were listed. Finally, some post-processing methods were defined, focussing on time-series data, characterization of the building envelope and the normalization of the measured energy use.

Furthermore, it can be concluded from the literature review that several types of data have an influence on the uncertainty of building performance analyses, which can be overcome by calibrating the performance assessment model. Occupant behaviour related inputs have one of the most important impacts on the energy performance calculation. Nevertheless, parameters regarding occupant behaviour are not incorporated in detail in current EPCs. There is a need for elaboration and improvement of these parameters in order to achieve in an improved EPC approach beyond the current state of the art.

To improve the occupant behaviour related inputs in EPC, its allocation and measured values, which are identified from the scoping analysis, remain extremely important. The quantification method and impact of an input varies with the type of parameters and measurements. The methodology of incorporating these key measured variables will be further explored and developed in WP4 "Methodology development" and validated in WP5 "Demonstration and validation".

## **5.** REFERENCES

## 5.1. References

Daša Majcen, Laure Itard, Henk Visscher, 2013. Actual and theoretical gas consumption in Dutch dwellings: What causes the differences? Energy Policy Vol. 61 (2013) 460-471

https://www.sciencedirect.com/science/article/pii/S030142151300503X

Deconinck A. 2016. Reliable thermal resistance estimation of building components from on-site measurements. Ph.D. Thesis, KU Leuven (Belgium), 215 pages

https://limo.libis.be/primo-

explore/fulldisplay?docid=LIRIAS1729358&context=L&vid=Lirias&lang=en\_US&search\_scope=Lirias&adaptor=Local%20Searc h%20Engine&tab=default\_tab&query=any,contains,deconinck%20thermal%20resistance&offset=0

Deurinck M., 2015. Energy savings in the residential building sector: An assessment based on stochastic modelling. PhD thesis KU Leuven(Belgium), 233 pages

https://limo.libis.be/primo-

explore/fulldisplay?docid=LIRIAS1729316&context=L&vid=Lirias&lang=en\_US&search\_scope=Lirias&adaptor=Local%20Searc h%20Engine&tab=default\_tab&query=any,contains,deurinck%20mieke&offset=0

M. Eguaras-Martínez, M. Vidaurre-Arbizu, C. Martín-Gómez 2014. Simulation and evaluation of building information modelling in a real pilot site, Applied Energy Vol. 114 (2014) 475–484. https://doi.org/10.1016/j.apenergy.2013.09.047

ePANACEA deliverable 2.3 (task T2.3) "Linking EPC and Smart Readiness Indicator" https://epanacea.eu/

ePANACEA deliverable 2.5 (task T2.5) "Linking EPCs with building passports and roadmaps" https://epanacea.eu/

ePANACEA task T4.1 "Smart & performance data-driven building energy performance assessment" https://epanacea.eu/

B. Gucyeter, 2018. Calibration of a Building Energy Performance Simulation Model Via Monitoring Data. Build. Perform. Anal. Conf. SimBuild Co-Organized by ASHRAE IBPSA-USA. (2018) 542–549. https://www.ashrae.com/File%20Library/Conferences/Specialty%20Conferences/2018%20Building%20Performance%20Analys is%20Conference%20and%20SimBuild/Papers/C074.pdf

Ioannou A., Itard L.C.M., 2015. Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy. Energy and Buildings Vol. 92 (2015), 216-233 https://www.sciencedirect.com/science/article/pii/S037877881500081X

Jain, N., Burman, E., Stamp, S., Mumovic, D., & Davies, M. 2020. Cross-sectoral assessment of the performance gap using calibrated building energy performance simulation. Energy and Buildings Vol. 224 (2020), 110271 <a href="https://www.sciencedirect.com/science/article/pii/S0378778820301833">https://www.sciencedirect.com/science/article/pii/S0378778820301833</a>

Kaiyu Sun, Tianzhen Hong, 2017. A simulation approach to estimate energy savings potential of occupant behaviour measures. Energy and Buildings Vol. 136 (2017), 43-62

https://www.sciencedirect.com/science/article/pii/S0378778816317716?via%3Dihub



Mikael Mangold, Magnus Österbring, Holger Wallbaum 2015. Handling data uncertainties when using Swedish energy performance certificate data to describe energy usage in the building stock. Energy and Buildings Vol. 102 (2015), 328-336 <a href="https://www.sciencedirect.com/science/article/pii/S0378778815300207?via%3Dihub">https://www.sciencedirect.com/science/article/pii/S0378778815300207?via%3Dihub</a>

Monfils S., Hauglustaine J.-M. 2016. Introduction of Behavioural Parameterization in the EPC Calculation Method and Assessment of Five Typical Urban Houses in Wallonia, Belgium. Sustainability Vol. 8(11) (2016), 1205. <u>https://www.mdpi.com/2071-1050/8/11/1205/htm</u>

Pär Johansson, Paula Wahlgren, Jan-Olof Dalenbäck, 2016. Differences between Measured and Calculated Energy Use in EPCs versus Building Permits. http://gualicheck-platform.eu/wp-content/uploads/2017/02/QUALICHeCK-Filed-study-Sweden.pdf

Paliouras, P., Matzaflaras, N., Peuhkuri, R. H., & Kolarik, J. 2015. Using Measured Indoor Environment Parameters for Calibration of Building Simulation Model- A Passive House Case Study. Energy Procedia Vol. 78 (2015), 1227–1232. https://www.sciencedirect.com/science/article/pii/S1876610215019414

W. Tian, Y. Heo, P. de Wilde, Z. Li, D. Yan, C.S. Park, X. Feng, G. Augenbroe, 2018. A review of uncertainty analysis in building energy assessment, Renew. Sustain. Energy Rev. Vol. 93 (2018) 285–301. https://doi.org/10.1016/j.rser.2018.05.029

H. Sözer, S.S. Aldin, 2019. Predicting the indoor thermal data for heating season based on short-term measurements to calibrate the simulation set-points, Energy and Buildings Vol. 202 (2019) 109422 <a href="https://doi.org/10.1016/j.enbuild.2019.109422">https://doi.org/10.1016/j.enbuild.2019.109422</a>

Tianzhen Hong, Sarah C. Taylor-Lange, Simona D'Oca, Da Yan, Stefano P. Corgnati, 2016. Advances in research and applications of energy-related occupant behaviour in buildings. Energy and Buildings Vol. 116 (2016), 694-702. https://www.sciencedirect.com/science/article/pii/S0378778815005307#

Vesanen, Teemu; Shemeikka, Jari; Hasan, Ala; Sheikh Shaun, 2019. List of Designers' Needs and Requirements for BIM-Based Renovation Processes, BIM4EEB deliverable D2.2 (Public report) <u>https://www.bim4eeb-project.eu/reports.html</u>

## 5.2. Additional relevant references

Egan J., Finn D., Soares P.H.D., Baumann V.A.R., Aghamolaei R., Beagon P., Neu O., Pallonetto F., O'Donnell J., 2018. Definition of a useful minimal-set of accurately specified input data for Building Energy Performance Simulation. Energy & Buildings 165, 172–183.

https://www.sciencedirect.com/science/article/pii/S0378778818301804

D.Majcen, L.C.M.Itard, H.Visscher. 2013. Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications. Energy Policy Vol 54 (2013) page 125-136 <u>https://www.sciencedirect.com/science/article/pii/S0301421512009731?via%3Dihub</u>

Marc Delghust, Wina Roelens, Tine Tanghe, Yves De Weerdt & Arnold Janssens. 2015. "Regulatory energy calculations versus real energy use in high-performance houses" Building Research & Information Vol. 43 (6) page 675-690 <a href="https://www.tandfonline.com/doi/full/10.1080/09613218.2015.1033874">https://www.tandfonline.com/doi/full/10.1080/09613218.2015.1033874</a>



Paliouras, P., Matzaflaras, N., Peuhkuri, R. H., & Kolarik, J. (2015). Using Measured Indoor Environment Parameters for Calibration of Building Simulation Model- A Passive House Case Study. Energy Procedia, 78, 1227–1232. https://www.sciencedirect.com/science/article/pii/S1876610215019414

Rodríguez G.C., Andrés A.C., Muñoz F.D., López J.M.C., Zhang Y., 2013. Uncertainties and sensitivity analysis in building energy simulation using macroparameters. Energy and Buildings. 67, 79-87. https://www.sciencedirect.com/science/article/pii/S0378778813005069

Tian W., Heo Y., de Wilde P., Li Z., Yan D., Park C.S., Feng X., Augenbroe G., 2018. A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews, 93, 285-301. https://www.sciencedirect.com/science/article/abs/pii/S136403211830368X

Tian W., Choudhary R., Augenbroe G., Lee S.H., 2015. Importance analysis and meta-model construction with correlated variables in evaluation of thermal performance of campus buildings. Building and Environment, 92, 61-74 <a href="https://www.sciencedirect.com/science/article/pii/S0360132315001870">https://www.sciencedirect.com/science/article/pii/S0360132315001870</a>

Tüysüz, F., Sözer, H., 2020. Calibrating the building energy model with the short term monitored data: A case study of a largescale residential building, Energy and Buildings, 224 <u>https://www.sciencedirect.com/science/article/pii/S0378778819330166</u>



## 6. ANNEX

A printout of the spreadsheet that contains 175 data variables is added below.

|                        | Nature of the data        |                                                                                                 |                |                           | Data accessibility                    |                            |          | Building typology |                 | Measurement & normalization methods |                           |                           | n methods                                |
|------------------------|---------------------------|-------------------------------------------------------------------------------------------------|----------------|---------------------------|---------------------------------------|----------------------------|----------|-------------------|-----------------|-------------------------------------|---------------------------|---------------------------|------------------------------------------|
| Catagony               | Barameters                | Data variables                                                                                  | Data unito     | Data frequency            | Ownership / Stakeholders involved     | Personal /<br>non-personal | Privacy  | Building types    | Building        | Acquisition<br>method &             | Acquisition<br>complexity | post-processing required? | if yes, correction for which indicators? |
| boundary conditions -  | Parameters                |                                                                                                 | Data units     |                           | Ownership / Stakeholders Involved     | data                       | high -   | Multi-family      | new/renovated   | sensors -                           | high - medium -           |                           |                                          |
| building geometry -    |                           |                                                                                                 |                |                           |                                       |                            | medium - | building (MF)     | old, unrenovate | questionnaire -                     | low                       |                           |                                          |
| MEASURABLE, VARYING    | DATA VARIABLES TO SUPPLEM | ENT OR REPLACE EPC INPUTS                                                                       | 1.1.4          |                           |                                       |                            |          | 1450              |                 |                                     |                           |                           | 1                                        |
| Energy efficiency      | Energy need               | heating energy need                                                                             | kwn            | yearly, seasonal, monthly | occupants, engineering firm           | personal                   | Medium   | MEB               | new             | meters, data base/                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy need               | cooling energy need                                                                             | KWN            | ually, nourly             | occupants, engineering firm           | personal                   | Modium   |                   | new             | meters, data base/                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy need               | cooling energy need                                                                             | kWh            | daily hourly              | occupants, engineering firm           | nersonal                   | Medium   | MFB               | new             | meters data base/                   | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy need               | DHW energy need                                                                                 | m3 kWh         | vearly monthly            | occupants, engineering firm           | nersonal                   | Medium   | MF & SF & NR      | new             | meters data base/                   | medium                    | ves                       | climate and use                          |
| Energy efficiency      | Energy need               | DHW energy need                                                                                 | m3, kWh        | daily, hourly             | occupants, engineering firm           | personal                   | Medium   | MF & SF & NR      | new             | meters, data base/                  | medium                    | ves                       | climate and use                          |
| Energy efficiency      | Energy use                | Use of fossil fuels                                                                             | m3, litres, K\ | vearly, seasonal, monthly | occupants, utilities                  | personal                   | Medium   | MF & SF & NR      | new & old       | bills, data base/uti                | l medium                  | ves                       | climate and use                          |
| Energy efficiency      | Energy use                | Total Electricity use                                                                           | kWh            | yearly, seasonal, monthly | occupants, utilities                  | personal                   | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Total Electricity use                                                                           | kWh            | daily, hourly             | occupants, utilities                  | ,<br>personal              | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for heating                                                                     | kWh            | yearly, seasonal, monthly | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for heating                                                                     | kWh            | daily, hourly             | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for cooling                                                                     | kWh            | yearly, seasonal, monthly | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for cooling                                                                     | kWh            | daily, hourly             | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for EV                                                                          | kWh            | yearly, monthly           | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for EV                                                                          | kWh            | daily, hourly             | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for DHW                                                                         | kWh            | yearly, monthly           | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for DHW                                                                         | kWh            | daily, hourly             | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for lighting                                                                    | kWh            | yearly, monthly           | occupants, engineering firm, maintena | a personal                 | Medium   | NR                | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for lighting                                                                    | kWh            | daily, hourly             | occupants, engineering firm, maintena | a personal                 | Medium   |                   | new & old       | smart meters, data                  | medium                    | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | Electricity use for non-EPB uses                                                                | KVVN           | yearly, monthly           | occupants, engineering firm, maintena | a personal                 | Madium   |                   | new & old       | smart meters, data                  | i medium                  | yes                       | climate and use                          |
| Energy efficiency      | Energy use                | en site electricity use for non-EPB uses                                                        | KWN<br>KWh     | daily, nourly             | occupants, engineering firm, maintena | a personal                 | Modium   | NE & SE & NR      | new & old       | smart meters, data                  | i medium                  | yes                       | climate and use                          |
| Energy efficiency      | on-site RES               | on-site electricity production                                                                  | kWb            | daily hourly              | occupants, engineering firm, mainten  |                            | Medium   | ME & SE & NR      | new & old       | smart meters, data                  | medium                    | yes                       | climate                                  |
| Energy efficiency      | on-site RES               | exported electricity                                                                            | kWh            | vearly monthly            | occupants, engineering firm, maintena | a personal                 | Medium   | ME & SE & NR      | new & old       | smart meters, data                  | medium                    | ves                       | climate and use                          |
| Energy efficiency      | on-site RES               | exported electricity                                                                            | kWh            | daily, hourly             | occupants, engineering firm, maintena | a personal                 | Medium   | MF & SF & NR      | new & old       | smart meters, data                  | medium                    | ves                       | climate and use                          |
| Boundary conditions    | outdoor climate           | temperature, solar radiation, wind, rain                                                        | °C. W/m². °.   | i min. 1 hour             | utilities                             | non-personal               | low      | MF & SF & NR      | new & old       | sensors                             | low                       | no                        | -                                        |
| Occupant behaviour     | occupants                 | activity level per occupant                                                                     | met            | per hour                  | inhabitant (owner/tenant)             | personal                   | high     | MF & SF & NR      | new & old       | questionnaire                       | low                       | no                        | -                                        |
| Occupant behaviour     | occupants                 | number of occupants                                                                             | -              | ,<br>per hour             | inhabitant (owner/tenant)             | ,<br>personal              | medium   | MF & SF & NR      | new             | sensors                             | medium                    | no                        | -                                        |
| Occupant behaviour     | heating behaviour         | heating schedule                                                                                | °C             | per hour                  | inhabitant (owner/tenant)             | personal                   | high     | MF & SF & NR      | new             | sensors                             | medium                    | no                        | -                                        |
| Boundary conditions    | indoor climate            | indoor comfort: Indoor Temp                                                                     | °C             | per day                   | inhabitant (owner/tenant)             | can be both                | high     | MF & SF & NR      | new & old       | sensors                             | high                      | no                        | -                                        |
| Boundary conditions    | indoor climate            | temperature in neighboring zones                                                                | °C             | per day                   | inhabitant (owner/tenant)             | can be both                | medium   | MF & SF & NR      | new & old       | sensors                             | high                      | no                        | -                                        |
| HVAC systems           | Air Handling unit         | Specific power consumption in kW/(m3/s)                                                         | kW/(m3/s)      | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | Air Handling unit         | Exhaust air heat recovery efficiency (0-1), dimless                                             | dimless        | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | Air Handling unit         | Heating capacity of the AHU, W                                                                  | W              | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | low                       | yes                       | harmonisation, making the data in        |
| HVAC systems           | Air Handling unit         | Cooling capacity of the AHU, W (sensible + latent)                                              | W              | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | low                       | yes                       | harmonisation, making the data in        |
| HVAC systems           | Building or zone          | Return air flow of the zone in L/(s m2)                                                         | L/(s m2)       | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | high                      | yes                       | harmonisation, making the data in        |
| HVAC systems           | Building or zone          | Supply air flow of the zone in L/(s m2)<br>Natural ventilation air change of the building, 1/h, | L/(s m2)       | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | high                      | yes                       | harmonisation, making the data in        |
| HVAC systems           | Building or zone          | e.g. 0.5 1/h                                                                                    | 1/h            | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | o high                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | Room unit                 | Nominal power of the room unit, in W                                                            | W              | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
|                        |                           | Domestic hot water demand of the building                                                       | 1/0 2          |                           |                                       |                            |          |                   |                 |                                     |                           |                           |                                          |
| HVAC systems           | HVAC plant                | l/floor-m2,a<br>Hot water system constant thermal losses,                                       | l/floor-m2,a   | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | HVAC plant                | kWh/m <sup>2</sup> ,a, circulation, storage tanks                                               | kWh/m²,a,      | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | HVAC plant                | Hot water system heat recovery efficiency, dimless                                              | dimless        | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| LIV/AC sustaines       | LIV/AC plant              | The capacity of the battery system related to ther                                              | LAA/b          |                           | designer ORM nerronnel legheer        | aan ha hath                | law      |                   | nou 9 ald       | plans DMC laghas                    | una a di una              |                           | have an institute making the data in     |
| HVAC systems           | HVAC plant                | Overall efficiency of the space heating system,                                                 | KWN            | once                      | designer, O&IVI personnel, logboog    | can be both                | IOW      | IVIF & SF & NK    | new & old       | plans, Bivis, logboo                | mealum                    | yes                       | narmonisation, making the data in        |
| HVAC systems           | HVAC plant system details | dimless<br>Overall efficiency of the domestic hot water heating                                 | dimless        | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | HVAC plant system details | system, dimless                                                                                 | dimless        | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | HVAC plant system details | Overall efficiency of the cooling system, dimless                                               | dimless        | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | HVAC plant system details | Capacity of the space heating system, W                                                         | W              | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | o medium                  | yes                       | narmonisation, making the data in        |
| HVAC systems           | HVAC plant system details | Capacity of the space DHW heating system, W                                                     | W              | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
| HVAC systems           | HVAC plant system details | Capacity of the cooling system, W                                                               | W              | once                      | designer, O&M personnel, logboog      | can be both                | IOW      |                   | new & old       | plans, BIVIS, logboo                | medium                    | yes                       | narmonisation, making the data in        |
| HVAC systems           | Photovoltaic              | Efficiency of the PV system dimlers, like 0.15                                                  | KVV            | once                      | designer, O&M personnel, logboog      | can be both                | low      | NE & SE & NR      | new & old       | plans, Bivis, logboo                | medium                    | yes                       | harmonisation, making the data in        |
| nvac systems           | Photovoitaic              | Azimuth the orientation, is the angle of the PV                                                 | uiilliess      | Unce                      | designer, Oaw personner, logboog      | can be both                | IOW      | IVIF & SF & INK   | new & old       | pians, הויוס, וטעטטט                | medium                    | yes                       | namonisation, making the data in         |
| HVAC systems           | Photovoltaic              | and 90° is W.                                                                                   | deg            | once                      | designer, O&M personnel logboog       | can be both                | low      | MF & SF & NR      | new & old       | plans, RMS, logbor                  | medium                    | ves                       | harmonisation making the data in         |
| nunce systems          | 1 notovoltale             | Nominal zero loss efficiency with the temp diff zero.                                           | ucb            | once                      | designer, earli personner, iogsoog    |                            | 1011     |                   | new a ola       | plans, 2005, 105000                 | meanam                    | yes                       |                                          |
| HVAC systems           | Solar thermal             | dimless (0-1), related to the reference area                                                    | dimless        | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, logboo                  | medium                    | yes                       | harmonisation, making the data in        |
|                        |                           | modules relative to the direction -90° is F 0° is S                                             |                |                           |                                       |                            |          |                   |                 |                                     |                           |                           |                                          |
| HVAC systems           | Solar thermal             | and 90° is W.                                                                                   | deg            | once                      | designer, O&M personnel, logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS, lophor                  | medium                    | ves                       | harmonisation, making the data in        |
| HVAC systems           | Building automation       | Lighting - Occupancy & light level control                                                      | Enumeration    | once                      | designer, O&M personnel. logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS. logbod                  | ok or product info        | yes                       | harmonisation, making the data in        |
| HVAC systems           | Building automation       | Blind control                                                                                   | Enumeration    | once                      | designer, O&M personnel. logboog      | can be both                | low      | MF & SF & NR      | new & old       | plans, BMS. logboo                  | ok or product info        | yes                       | harmonisation, making the data in        |
| FIXED DATA VARIABLES T | O SUPPLEMENT OR REPLACE   | PC INPUTS                                                                                       |                |                           |                                       |                            |          |                   |                 | . , .,                              |                           |                           | . ,                                      |
| Occupant behaviour     | occupants                 | type of occupants                                                                               | -              | -                         | inhabitant (owner/tenant)             | personal                   | medium   | MF & SF           | new & old       | questionnaire                       | low                       | no                        | -                                        |
| Occupant behaviour     | occupants                 | number of occupants                                                                             | -              | per hour                  | inhabitant (owner/tenant)             | personal                   | medium   | MF & SF & NR      | old             | questionnaire                       | low                       | no                        | -                                        |
| Occupant behaviour     | heating behaviour         | gross heated/cooled volume                                                                      | -              | -                         | inhabitant (owner/tenant)             | personal                   | high     | MF & SF & NR      | new & old       | questionnaire                       | low                       | no                        | -                                        |
| Occupant behaviour     | domestic hot water use    | number of showers & baths                                                                       | -              | per day                   | inhabitant (owner/tenant)             | personal                   | high     | MF & SF           | new & old       | questionnaire                       | low                       | no                        | -                                        |
| Occupant behaviour     | domestic energy use       | cooking time                                                                                    | h              | per day                   | inhabitant (owner/tenant)             | personal                   | high     | MF & SF           | new & old       | questionnaire                       | low                       | no                        | -                                        |
| Occupant behaviour     | domestic energy use       | big energy consumers (pool, hot tub, sauna, EV)                                                 | -              | -                         | inhabitant (owner/tenant)             | personal                   | medium   | MF & SF & NR      | new & old       | questionnaire                       | low                       | no                        | -                                        |

|                          | Nature of the data              |                                                                                                |                       | Data accessibility            |                                         |                   |          | Building t      | ypology         | Measurement & normalization methods |                 |                                       |                                               |
|--------------------------|---------------------------------|------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|-----------------------------------------|-------------------|----------|-----------------|-----------------|-------------------------------------|-----------------|---------------------------------------|-----------------------------------------------|
|                          |                                 |                                                                                                |                       |                               |                                         | Personal /        |          |                 |                 | Acquisition                         |                 | · · · · · · · · · · · · · · · · · · · |                                               |
|                          |                                 |                                                                                                |                       | Data frequency                |                                         | non-personal      | Privacy  |                 | Building        | method &                            | complexity      | required?                             | indicators?                                   |
| Category                 | Parameters                      | Data variables                                                                                 | Data units            |                               | Ownership / Stakeholders involved       | data              | high -   | Building types  | condition       | equipment                           | high - medium - |                                       |                                               |
| building geometry -      |                                 |                                                                                                |                       |                               |                                         |                   | medium - | building (MF)   | old, unrenovate | questionnaire -                     | low             |                                       | (                                             |
|                          |                                 | number of dishwashers, washing machines and                                                    |                       | 1                             |                                         | •                 | 1        | •               | 1               | •                                   | •               | •                                     |                                               |
| Occupant behaviour       | domestic energy use             | dryers                                                                                         | -                     | per day                       | inhabitant (owner/tenant)               | personal          | high     | MF & SF         | new & old       | questionnaire                       | low             | no                                    | -                                             |
| LIV/AC sustame           | Air Llondling unit              | Supply air setpoint in oC (the air that is delivered to                                        | docariativo           |                               | designer ORM nerronnel leghang          | non norronal      | law      |                 | now 9 old       | nione DMC logher                    |                 |                                       | harmonization moleing the data in             |
| HVAC systems             | Air Handling unit               | crite zones)<br>Schodulo of the air handling unit                                              | schodulo              | once                          | designer, O&M personnel, logboog        | non-personal      | low      | NE & SE & NR    | new & old       | plans, Bivis, logboo                | o mealum        | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Setpoints for a zone or buildin | Heating set point in of                                                                        | oC                    | once                          | designer, O&M personnel logboog         | non-nersonal      | low      | MF & SF & NR    | new & old       | plans, BIVIS, logboo                | medium          | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Setpoints for a zone or buildin | Cooling set point in oC                                                                        | 00                    | once                          | designer, O&M personnel logboog         | non-personal      | low      | MF & SF & NR    | new & old       | nlans BMS logbor                    | nedium          | ves                                   | harmonisation, making the data in             |
| invite systems           |                                 | Maximum CO2-lev of the zone when                                                               | 00                    | onee                          | designer, oan personner, logooog        | non personal      | 1011     |                 | new a ola       | piulis, 2003, 105500                | , meanann       | yes                                   | harmonisation, making the data m              |
| HVAC systems             | Setpoints for a zone or buildin | CO2-controlled ventilation, in ppm                                                             | ppm                   | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Setpoints for a zone or buildin | waximum RH of the zone when RH-controlled                                                      | %                     | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Setpoints for a zone or buildin | Schedule of the indoor air heating setpoint                                                    | schedule              | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o high          | ves                                   | harmonisation, making the data in             |
|                          |                                 | Schedule of the indoor air cooling setpoint                                                    |                       |                               |                                         |                   |          |                 |                 |                                     | 5               | ,                                     |                                               |
| HVAC systems             | Setpoints for a zone or buildin | is temperature                                                                                 | schedule              | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o high          | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Building or zone                | (constant or variable air volume control)                                                      |                       | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
| ,                        | Ū                               | Efficiency of the room unit using selected carrier,                                            |                       |                               |                                         |                   |          |                 |                 |                                     |                 | ,                                     |                                               |
| HVAC systems             | Room unit                       | dimless, e.g stove 0.8, heat pump 3.0                                                          | dimless               | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Room unit                       | evenings                                                                                       | schedule              | once                          | designer O&M personnel logboog          | non-nersonal      | low      | MF & SF & NR    | new & old       | nlans BMS loghor                    | high            | Ves                                   | harmonisation making the data in              |
| ITVAC Systems            | Noom unit                       | Temperature of the cold domestic water (cold                                                   | Schedule              | once                          | designer, own personner, logboog        | non-personal      | 10 **    |                 | new & old       |                                     | Jugu            | yes                                   | namonisation, making the data in              |
| HVAC systems             | HVAC plant                      | water from the city systems)                                                                   | degC                  | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | low             | yes                                   | harmonisation, making the data in             |
| HVAC systems             | HV/AC plant                     | Supply temperature of the domestic hot water<br>from the plant (bot water to showers and tans) | deaC                  | 0000                          | designer O&M personnel logboog          | non-nersonal      | low      | ME & SE & NR    | new & old       | plans BMS logbor                    | medium          | Vec                                   | harmonisation making the data in              |
| ITVAC Systems            | ITVAC plaint                    | Slope the angle of the PV modules from the                                                     | uege                  | once                          | designer, Oalvi personner, logboog      | non-personal      | 10 W     | IVIF & JF & IVI | new & olu       |                                     | lineululli      | yes                                   |                                               |
| HVAC systems             | Photovoltaic                    | horizontal plane. 0 deg = horiz 90 deg = Vertical                                              | deg                   | once                          | designer. O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans. BMS. logboo                  | o medium        | ves                                   | harmonisation. making the data in             |
| HVAC systems             | Solar thermal                   | Reference area of the collector                                                                | m2                    | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logbod                  | o medium        | ves                                   | harmonisation, making the data in             |
|                          |                                 | Slope, the angle of the PV modules from the                                                    |                       |                               |                                         |                   |          |                 |                 |                                     |                 | 7                                     |                                               |
| HVAC systems             | Solar thermal                   | horizontal plane, 0 deg = horiz., 90 deg = Vertical                                            | deg                   | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
|                          |                                 | Supply temperature of the radiator, fan coils etc                                              |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
|                          |                                 | room systems in the design point, e.g 70 degC or 15                                            |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
| HVAC systems             | Distribution System Details     | degC                                                                                           | degC                  | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
|                          |                                 | Return temperature of the radiator, fan coils etc                                              |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
| HV/AC systems            | Distribution System Details     | room systems in the design point, e.g 40 degC or 20                                            | deaC                  | 0000                          | designer O&M personnel logboog          | non-nersonal      | low      | ME & SE & NR    | new & old       | plans BMS logbor                    | medium          | Vec                                   | harmonication making the data in              |
| TIVAC Systems            | Distribution system Details     | RoomEmissionType: Radiator, FanCoil                                                            | ucge                  | onee                          | designer, oldin personner, logboog      | non personal      | 101      |                 | new a ola       | pians, bivis, logboo                | medium          | yes                                   | harmonisation, making the data in             |
|                          |                                 | FloorHeating, FloorCooling, CeilingHeating,                                                    |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
| HVAC systems             | Distribution System Details     | CeilingCooling                                                                                 | enumeration           | n once                        | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | olow            | yes                                   | harmonisation, making the data in             |
|                          |                                 | Room Emission Control Type Manual,                                                             |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
| HVAC systems             | Distribution System Details     | ThermostaticValve, PIControl                                                                   | enumeratior           | nonce                         | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
|                          |                                 | Pump efficiency of the hydronic distribution pumps                                             |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
|                          | Distribution System Datails     | (heating, cooling, radiators, AHU loop), dimless, like                                         | dimlace               | 0000                          | designer OSM percennel leghage          | non norronal      | low      | ME 9. CE 9. ND  | now & old       | plans PMS logbor                    | modium          | Voc                                   | harmonication making the data in              |
| Ruilding onvolono        | Distribution system Details     | U,35                                                                                           | W//m2*K               | when relevant energy ren      | designer, Oaki personner, logboog       | non-personal      | low      | NE & SE & NR    | new & old       | tochnical guideling                 | o mealum        | yes                                   | narmonisation, making the data in             |
| Building envelope        | opaque building components      | Coefficient of total linear thermal transmittance W                                            | W/K                   | when installation of them     | owner building manager energy audit     | non personal      | low      | MF & SF & NR    | new & old       | calculations based                  | medium          | no                                    | -                                             |
| Banang enterope          | obadae sensui 8 combonente      | Infiltration air change of the building. 1/h. e.g. 0.2                                         |                       |                               |                                         | and personal      |          |                 |                 |                                     |                 |                                       |                                               |
| Building envelope        | Air tightness                   | 1/h                                                                                            | 1/h                   | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
| Building envelope        | transparent building compone    | e thermal transmittance, U-value                                                               | W/(m2*K)              | when relevant energy ren      | owner, building manager, energy audit   | non personal      | low      | MF & SF & NR    | new & old       | technical guideline                 | low/medium      | no                                    | -                                             |
| Building envelope        | transparent building compone    | e g-value                                                                                      | -                     | when relevant energy ren      | owner, building manager, energy audit   | non personal      | low      | MF & SF & NR    | new & old       | technical guideline                 | e: low/medium   | no                                    | -                                             |
| CAN NOT BE USED TO IM    | IPROVE THE CURRENT EPC          |                                                                                                |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       |                                               |
| Building geometry        | floor area                      | net area                                                                                       | m2                    | when installation of thern    | n owner, building manager, energy audit | personal/non-pe   | rsclow   | MF & SF & NR    | new & old       | questionnaire, plar                 | n low/medium    | no                                    | -                                             |
| Building geometry        | floor area                      | gross area                                                                                     | m2                    | when installation of thern    | owner, building manager, energy audit   | epersonal/non-per | rsclow   | MF & SF & NR    | new & old       | questionnaire, plar                 | n low/medium    | no                                    | -                                             |
| Building geometry        | space volume                    | net volume                                                                                     | m3                    | when installation of thern    | owner, building manager, energy audit   | epersonal/non-per | rsclow   | MF & SF & NR    | new & old       | questionnaire, plai                 | n low/medium    | no                                    | -                                             |
| Building geometry        | space volume                    | gross volume                                                                                   | m3                    | when installation of thern    | owner, building manager, energy audit   | epersonal/non-pe  | rs(IOW   | MF & SF & NR    | new & old       | questionnaire, plai                 | n low/medium    | no                                    | -                                             |
| Building geometry        | opaque building components      | orientation                                                                                    | 0                     | -                             | owner, building manager, energy audit   | non-personal      | IOW      |                 | new & old       | map, plans                          | low             | no                                    | -                                             |
| Building envelope        | transparent building components | Area                                                                                           | m2                    | -<br>when relevant energy ren | owner, building manager, energy audit   | non-personal      | low      | NE & SE & NR    | new & old       | tochnical quideling                 | IOW             | 10                                    | -                                             |
| Building geometry        | transparent building compone    | orientation                                                                                    | 0                     | -                             | owner building manager energy audit     | non-personal      | low      | MF & SF & NR    | new & old       | man nlans                           | low             | no                                    | -                                             |
| Boundary conditions      | construction & renovation vea   | avear                                                                                          | -                     | -                             | owner                                   | non-personal      | low      | MF & SF & NR    | new & old       | questionnaire                       | low             | ne                                    | -                                             |
| Boundary conditions      | location                        | address. coordinates                                                                           | -                     | -                             | owner                                   | non-personal      | low      | MF & SF & NR    | new & old       | questionnaire. dat                  | alow            | no                                    | -                                             |
| ,<br>Boundary conditions | indoor climate                  | indoor comfort: humidity                                                                       | % or g/m <sup>3</sup> | per day                       | inhabitant (owner/tenant)               | can be both       | high     | MF & SF & NR    | new & old       | sensors                             | high            | no                                    | -                                             |
| Boundary conditions      | indoor climate                  | indoor air quality: CO2                                                                        | ppm                   | per day                       | inhabitant (owner/tenant)               | can be both       | medium   | MF & SF & NR    | new & old       | sensors                             | high            | no                                    | -                                             |
| HVAC systems             | Air Handling unit               | Name of the air handling unit                                                                  | descriptive           | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | olow            | yes                                   | harmonisation, making the data in             |
| HVAC systems             | Building or zone                | Name of the Zone (Zone1, bedroom, etc)                                                         | descriptive           | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | low             | yes                                   | harmonisation, making the data in             |
|                          | <b>2</b> 11 11                  | Controller serving the zone, in the list                                                       |                       |                               |                                         |                   |          |                 |                 |                                     |                 |                                       | , , <u>, , , , , , , , , , , , , , , , , </u> |
| HVAC systems             | Building or zone                | zoneControllerSetPointSet (1:N)                                                                |                       | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | narmonisation, making the data in             |
| HVAC systems             | Building or zone                | Heating and cooling devices                                                                    |                       | once                          | designer, U&M personnel, logboog        | non-personal      | low      | MF&SF&NR        | new & old       | plans, BMS, logboo                  | O IOW           | yes                                   | narmonisation, making the data in             |
| INAL SYSTEMS             | Building or zone                | Air ridnaling unit serving the zone,                                                           |                       | once                          | uesigner, U&IVI personnel, logboog      | non-personal      | IOW      | IVIF & SF & NK  | new & old       | pians, BIVIS, logboo                | neaium          | yes                                   | narmonisation, making the data in             |
| HVAC systems             | Room unit                       | Electricity, Solar, Biomass, Wind                                                              | enumeration           | once                          | designer, O&M personnel logboog         | non-personal      | low      | MF & SF & NR    | new & old       | plans, RMS, logbor                  | Nol             | Ves                                   | harmonisation making the data in              |
|                          |                                 | The volume of the heating energy storage $m^3$                                                 | 2                     |                               |                                         | personal          |          |                 |                 | P.0.0, P.00, 10g000                 |                 | ,                                     |                                               |
| HVAC systems             | HVAC plant                      | (water)                                                                                        | m³                    | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |
|                          |                                 | The volume of the cooling energy storage m <sup>3</sup>                                        |                       |                               | 2 3                                     |                   |          |                 |                 | -                                   |                 |                                       | -                                             |
| HVAC systems             | HVAC plant                      | (water)                                                                                        | m³                    | once                          | designer, O&M personnel, logboog        | non-personal      | low      | MF & SF & NR    | new & old       | plans, BMS, logboo                  | o medium        | yes                                   | harmonisation, making the data in             |

|                                              |                              | Nature of the data                                                                                        |                |                          | Data access                             | ibility              |                        | Building t                    | typology           |                              | Measureme              | ent & normalizatio | n methods                         |
|----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------|----------------|--------------------------|-----------------------------------------|----------------------|------------------------|-------------------------------|--------------------|------------------------------|------------------------|--------------------|-----------------------------------|
|                                              |                              |                                                                                                           |                |                          |                                         | Personal /           |                        |                               |                    | Acquisition                  | Accusicition           | nest successing    | if was as mostion for which       |
| Category                                     | Parameters                   | Data variables                                                                                            | Data units     | Data frequency           | Ownership / Stakeholders involved       | non-personal<br>data | Privacy<br>sensitivity | Building types                | Building condition | method &<br>equipment        | complexity             | required?          | indicators?                       |
| boundary conditions -<br>building geometry - |                              |                                                                                                           |                |                          |                                         |                      | high -<br>medium -     | Multi-family<br>building (MF) | new/renovated      | sensors -<br>questionnaire - | high - medium -<br>Iow |                    |                                   |
|                                              | I.                           | System description either main or aux., like gas                                                          |                | 1                        |                                         |                      |                        | 1                             |                    |                              | •                      | -                  | ·                                 |
|                                              |                              | boiler with DHW preparation, no centralized                                                               |                |                          |                                         |                      |                        |                               |                    |                              |                        |                    |                                   |
| HVAC systems                                 | HVAC plant system details    | cooling                                                                                                   | enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         | low                    | MF & SF & NR                  | new & old          | plans, BMS, logbo            | o medium               | yes                | harmonisation, making the data in |
| HVAC systems                                 | HVAC plant system details    | EnergyCarrierForSpaceHeating                                                                              | enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         | low                    | MF & SF & NR                  | new & old          | plans, BMS, logbo            | o low                  | yes                | harmonisation, making the data in |
| HVAC systems                                 | HVAC plant system details    | EnergyCarrierForDHWHeating                                                                                | enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         | low                    | MF & SF & NR                  | new & old          | plans, BMS, logbo            | o low                  | yes                | harmonisation, making the data in |
| HVAC systems                                 | HVAC plant system details    | EnergyCarrierForCooling                                                                                   | enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         | low                    | MF & SF & NR                  | new & old          | plans, BMS, logbo            | olow                   | yes                | harmonisation, making the data in |
| HVAC systems                                 | Photovoltaic                 | System description                                                                                        |                | once                     | designer, O&M personnel, logboog        | non-personal         | low                    | MF & SF & NR                  | new & old          | plans, BMS, logbo            | olow                   | yes                | harmonisation, making the data in |
| HVAC systems                                 | Solar thermal                | System description                                                                                        |                | once                     | designer, O&M personnel, logboog        | non-personal         | low                    | MF & SF & NR                  | new & old          | plans, BMS, logbo            | olow                   | yes                | harmonisation, making the data in |
| Building envelope                            | building materials           | type                                                                                                      |                | when relevant energy ren | c owner, building manager, energy audit | personal             | low                    | MF & SF & NR                  | new & old          | manufacturer's da            | it low/medium          | no                 | -                                 |
| Building envelope                            | building materials           | thermal conductivity, λ                                                                                   | W/mK           | when relevant energy ren | c owner, building manager, energy audit | non personal         | low                    | MF & SF & NR                  | new & old          | manufacturer's da            | it low/medium          | no                 | -                                 |
| Building envelope                            | building materials           | thickness                                                                                                 | m              | when relevant energy ren | owner, building manager, energy audit   | non personal         | low                    | MF & SF & NR                  | new & old          | calculations based           | l low/medium           | no                 | -                                 |
|                                              | OF SCORE OR OVERLAR WITH     |                                                                                                           |                | when relevant energy ren | cowner, building manager, energy audit  | (non personal        | IOW                    | MF & SF & NR                  | new & old          | calculations based           | l low/medium           | no                 | -                                 |
| CONSIDERED TO BE OUT                         | OF SCOPE OR OVERLAP WITH O   | UINER VARIABLES                                                                                           | Fauna aratian  |                          | designer ORM personnel leghees          | non norronal         |                        |                               | nou ( Q old        | nlans DMC lashs              | ak ar product info     |                    | harmonication, making the data in |
| HVAC systems                                 | Building automation          | Heat flow towards emission system                                                                         | Enumeration    | once                     | designer, O&IVI personnel, logboog      | non-personal         |                        | IVIF & SF & NR                | new & old          | plans, Bivis, logbo          | ok or product into     | yes                | narmonisation, making the data in |
|                                              | Building automation          | distribution                                                                                              | Enumoration    | 0000                     | designer ORM personnel leghage          | non norronal         |                        | ME 9. CE 9. ND                | now & old          | planc BMC logho              | ak ar product info     |                    | harmonication making the data in  |
| Ruilding onvolono                            | transparent building company |                                                                                                           | Enumeration    | when relevant energy ren | designer, Oalvi personner, logboog      | non personal         | low                    | ME & SE & NR                  | new & old          | manufacturor's da            | ok or product into     | yes                | narmonisation, making the data m  |
| Building envelope                            | transparent building compone | MainHeating AuxHeating MainCooling                                                                        | -              | when relevant energy ren | i owner, building manager, energy addin | chon personal        | 1000                   | IVIF & JF & INK               | new & olu          |                              | it low/meulum          | 110                | -                                 |
| HVAC systems                                 | Boom unit                    |                                                                                                           | enumeration    | once                     | designer O&M personnel logboog          | non-nersonal         |                        | MF & SF & NR                  | new & old          | nlans BMS logho              | o low                  | VAS                | harmonisation making the data in  |
| HVAC systems                                 | Building automation          | Ventilation - Humidity control                                                                            | Enumeration    | once                     | designer O&M personnel logboog          | non-nersonal         |                        | MF & SF & NR                  | new & old          | nlans BMS logbo              | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Lighting - Light level/Daylight control                                                                   | Enumeration    |                          | designer O&M personnel logboog          | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Technical Management - Setnoint management                                                                | Enumeration    | once                     | designer O&M personnel logboog          | non-nersonal         |                        | MF & SF & NR                  | new & old          | nlans BMS logbo              | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Technical Management - Runtime management                                                                 | Enumeration    | once                     | designer O&M personnel logboog          | non-nersonal         |                        | MF & SF & NR                  | new & old          | nlans BMS logbo              | ok or product info     | ves                | harmonisation, making the data in |
| invac systems                                |                              | Technical Management - Detecting faults of                                                                | Lindificiation |                          | designer, oan personner, logboog        | non personal         |                        |                               |                    | pidiis, bivis, iogoo         |                        | yes                |                                   |
| HVAC systems                                 | Building automation          | the diagnosis of these faults<br>Technical Management - Reporting information                             | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | regarding energy consumption, indoor conditions                                                           | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | and renewable energies                                                                                    | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | heat shifting                                                                                             | Enumeration    | once                     | designer O&M personnel logboog          | non-nersonal         |                        | MF & SF & NR                  | new & old          | nlans BMS logho              | ok or product info     | VAS                | harmonisation making the data in  |
| HVAC systems                                 | Building automation          | Technical Management - Smart Grid integration                                                             | Enumeration    |                          | designer O&M personnel logboog          | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes<br>ves         | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | FN15232-1:2017 efficiency class                                                                           |                | once                     | designer O&M personnel logboog          | non-nersonal         |                        | MF & SF & NR                  | new & old          | nlans BMS logbo              | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Heating - Emission control                                                                                | Fnumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Heating - Emission control for TABS (heating mode)<br>Heating - Control of distribution network bot water | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | temperature (supply or return)                                                                            | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Heating - Control of distribution pumps in networks                                                       | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | district heating)                                                                                         | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Heating - Heat generator control (heat pump)                                                              | Enumeration    | once                     | designer. O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation. making the data in |
| HVAC systems                                 | Building automation          | Heating - Heat generator control (outdoor unit)                                                           | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans. BMS. logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Heating - Sequencing of different heat generators                                                         | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
|                                              | Sanan Baaton aton            | Heating - Control of Thermal Energy Storage (TES)                                                         |                |                          |                                         | non personal         |                        |                               |                    | piano, 2110, 10800           |                        | 100                |                                   |
| HVAC systems                                 | Building automation          | operation<br>DHW - Control of DHW storage charging with direct                                            | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | electric heating or integrated electric heat pump<br>DHW - Control of DHW storage charging using hot      | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | water generation                                                                                          | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | collector and supplementary heat generation                                                               | Fnumeration    | once                     | designer. 0&M nersonnel loghoog         | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | Ves                | harmonisation making the data in  |
| HVAC systems                                 | Building automation          | DHW - Control of DHW circulation nump                                                                     | Enumeration    | once                     | designer, O&M personnel loghoog         | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | Ves                | harmonisation making the data in  |
| HVAC systems                                 | Building automation          | Cooling - Emission control                                                                                | Enumeration    |                          | designer O&M personnel logboog          | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes<br>ves         | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Cooling - Emission control for TABS (cooling mode)                                                        | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | water temperature (supply or return)                                                                      | Fnumeration    | once                     | designer. 0&M nersonnel loghoog         | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | Ves                | harmonisation making the data in  |
| HVAC systems                                 | Building automation          | Cooling - Control of distribution numps in networks                                                       | Enumeration    |                          | designer, O&M personnel logboog         | non-nersonal         |                        | ME & SE & NR                  | new & old          | nlans BMS logbo              | ok or product info     | ves                | harmonisation, making the data in |
| TIVAC Systems                                | building automation          | Cooling - Interlock between besting and cooling                                                           | Lindifieration | Tonce                    | designer, oan personner, logboog        | non-personal         |                        |                               | new & old          |                              |                        | yes                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | control of emission and/or distribution                                                                   | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Cooling - Generator control for cooling                                                                   | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Cooling - Sequencing of generators for chilled water                                                      | Enumeration    | once                     | designer, O&M personnel, logboog        | non-personal         |                        | MF & SF & NR                  | new & old          | plans, BMS, logbo            | ok or product info     | ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Cooling - Control of Thermal Energy Storage (TES)                                                         | Enumeration    | once                     | designer O&M personnel logboog          | non-nersonal         |                        | ME & SE & NR                  | new & old          | plans BMS logbo              | ok or product info     | Ves                | harmonisation, making the data in |
| HVAC systems                                 | Building automation          | Ventilation - Supply air flow control at the room                                                         | Enumeration    |                          | designer O&M nerconnel loghoog          |                      |                        |                               | new & old          | nlans RMS loop               | ok or product info     |                    | harmonisation making the data in  |
| HVAC systems                                 |                              | Ventilation - Room air temp. control (all-air                                                             | Enumeration    |                          | designer O&M personnel laphas           |                      |                        |                               |                    | plans BMS look               |                        | yes                | harmonisation, making the data in |
|                                              |                              | Ventilation - Room air temp. control (Combined                                                            | Enumeration    | i unce                   | uesigner, Oavi personnel, logboog       | non-personal         |                        |                               |                    | piaris, BIVIS, IOgbo         | ok or product info     | yes                | narmonisation, making the data in |
|                                              | Building automation          | all-water systems)                                                                                        | Enumeration    |                          | designer, U&IVI personnel, logboog      | non-personal         |                        |                               | new & old          | plans, BIVIS, logbo          | ok or product info     | yes                | narmonisation, making the data in |
| INAC SYSTEMS                                 | Building automation          | Ventilation - Outside air (UA) flow control                                                               | ∟numeration    | ONCE                     | uesigner, U&IVI personnel, logboog      | non-personal         |                        | IVIF & SF & NR                | new & old          | pians, BIVIS, logbo          | ok or product info     | yes                | narmonisation, making the data in |
| HVAC systems                                 | Building automation          | ventuation - All now or pressure control at the alf<br>handler level                                      | Enumoration    | 00000                    | designer O&M nerconnol Joshoos          | non-perconal         |                        | ME & CE & ND                  | new & ald          | nlans RMC looks              | ok or product info     |                    | harmonisation making the data in  |
| HVAC systems                                 | Building automation          | Ventilation - Heat recovery control: icing protection                                                     | Enumeration    | once                     | designer O&M personnel logboog          | non-personal         |                        | MF& CF& NP                    | new & old          | nlans RMS logbo              | ok or product info     | Ves                | harmonisation, making the data in |
| TIVAC SYSTEMS                                | Banang automation            | ventilation - near recovery control. Icing protection                                                     | Linumeration   |                          | accience, oann heisonner, iognoog       | non-heizoligi        |                        |                               |                    | רואום, וטצטט, וטצטט          |                        | yes                | narmonisation, making the uata m  |

| Nature of the data                           |                             |                                                                                                           |             |                | Data accessibility                |                                    |                        | Building typology             |                                | Measurement & normalization methods  |                           |                              |                                          |  |
|----------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|-------------|----------------|-----------------------------------|------------------------------------|------------------------|-------------------------------|--------------------------------|--------------------------------------|---------------------------|------------------------------|------------------------------------------|--|
| Category                                     | Parameters                  | Data variables                                                                                            | Data units  | Data frequency | Ownership / Stakeholders involved | Personal /<br>non-personal<br>data | Privacy<br>sensitivity | Building types                | Building condition             | Acquisition<br>method &<br>equipment | Acquisition<br>complexity | post-processing<br>required? | if yes, correction for which indicators? |  |
| boundary conditions -<br>building geometry - |                             |                                                                                                           |             |                |                                   |                                    | high -<br>medium -     | Multi-family<br>building (MF) | new/renovated old, unrenovated | sensors -<br>questionnaire -         | high - medium -<br>Iow    |                              |                                          |  |
|                                              |                             | Ventilation - Heat recovery control: prevention of                                                        |             |                |                                   |                                    |                        |                               |                                |                                      |                           |                              |                                          |  |
| HVAC systems                                 | Building automation         | overheating                                                                                               | Enumeratior | n once         | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | k or product info         | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Building automation         | Ventilation - Free mechanical cooling<br>Ventilation - Supply air control (temperature and air            | Enumeratior | nonce          | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | k or product info         | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Building automation         | flow)<br>SpaceSupplyIsConstant, False= is proportional to<br>the outside temperature, otherwise constant, | Enumeratior | nonce          | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | k or product info         | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Distribution System Details | heating proportional/cooling usually constant<br>Outside Air Design Point Temperature, Outside air        | boolean     | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Distribution System Details | temp where the design supply temp at max.value<br>Supply fluid temperature of the AHU heat                | degC        | once           | designer, O&M personnel, logboog  | non-personal                       | low                    | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Distribution System Details | exchanger, always constant like 50 or 7 degC<br>Return fluid temperature of the AHU heat                  | degC        | once           | designer, O&M personnel, logboog  | non-personal                       | low                    | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Distribution System Details | exchanger, always constant like 30 or 12 degC<br>First order solar themal collector performance           | degC        | once           | designer, O&M personnel, logboog  | non-personal                       | low                    | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Solar thermal               | factor, related to the reference area<br>Second order solar themal collector performance                  |             | once           | designer, O&M personnel, logboog  | non-personal                       | low                    | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Solar thermal               | factor, related to the reference area                                                                     |             | once           | designer, O&M personnel, logboog  | non-personal                       | low                    | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | Solar thermal               | Incidence angle modifier 50 degrees, dimless (0-1)                                                        | dimless     | once           | designer, O&M personnel, logboog  | non-personal                       | low                    | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | HVAC plant                  | Details of the main system like boiler, GSHP<br>Details of the auxiliary system like back-up              |             | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | HVAC plant                  | electricity in case of GSHP                                                                               |             | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | HVAC plant                  | Solar PV system details                                                                                   |             | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | HVAC plant                  | Solar thermal system details                                                                              |             | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | HVAC plant                  | Heating hydronics system details                                                                          |             | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |
| HVAC systems                                 | HVAC plant                  | Cooling hydronics system details                                                                          |             | once           | designer, O&M personnel, logboog  | non-personal                       |                        | MF & SF & NR                  | new & old                      | plans, BMS, logboo                   | medium                    | yes                          | harmonisation, making the data in        |  |