BUILD UP
The European portal for energy efficiency and renewable energy in buildings
WEBINAR
Unlocking the potential of SMEs: A holistic framework to train SME-workforce in Circular Construction

14th November 2023 / 11.00H – 12.30H CET
<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker name, title, and organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Bus Go Circular + (Poll #1)</td>
<td>Sreeja Raghunathan, Built Environment Consultant (Circle Economy Foundation)</td>
</tr>
<tr>
<td>Framework for circular interventions in the construction value chain</td>
<td>Sreeja Raghunathan, Built Environment Consultant (Circle Economy Foundation)</td>
</tr>
<tr>
<td>Fundamental Training pack SMEs</td>
<td>Ira Ivanova, Project Lead (EnEffect)</td>
</tr>
<tr>
<td>Importance and benefits from training in circularity for SMEs in construction</td>
<td>Silviya Pavlova, MBA CMC Assoc CIPD, Certified Management Consultant in Strategy and International Business Development</td>
</tr>
<tr>
<td>Q&A</td>
<td>All Speakers</td>
</tr>
<tr>
<td>Briefing about the interactive sessions</td>
<td>Otis Schwab, Project Manager (Circle Economy Foundation)</td>
</tr>
<tr>
<td>Interactive breakout session + (Poll #2)</td>
<td>All Moderators</td>
</tr>
<tr>
<td>Conclusion & sum up main takeaways + (Poll #3)</td>
<td>All Moderators</td>
</tr>
<tr>
<td>Upcoming webinars</td>
<td>Otis Schwab, Project Manager (Circle Economy Foundation)</td>
</tr>
<tr>
<td>Thank you from BUILD UP</td>
<td>BUILD UP</td>
</tr>
</tbody>
</table>
Empowering SMEs in Circular Construction

Unlock your potential as an SME in the Construction Sector

Date: 14th November, 2023

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101033740
Why Circular Construction?

• The construction sector is responsible for more than **40% of the primary energy consumption** in Europe, and **36% of CO2 emissions** in Europe (Eurostat, 2020).

• A circular approach in construction can significantly **reduce the embodied emissions of building materials and material consumption**, since the construction sector is high-intensive material user.

• With **18 million people**, the construction sector generates about **9% of the GDP** of the EU.

• Like any transition, we need a skilled workforce to make it happen.
In the EU, micro enterprises display the biggest part of the sector with 94.1%.

99.9% of the European construction sector is composed of micro, small and medium-sized enterprises (fewer than 250 employees).

To identify a reference point, in 2016, construction SMEs made up for 88% of total employment and 80% of total value added of the construction sector in the EU-28.
Introduction to BUS GO Circular
What is the main reason for your business to consider implementing circular economy training?
Circular Construction Skills Framework
by Sreeja Raghunathan (Built Environment Consultant, Circle Economy Foundation)
BUS GO Circular Project Outcomes

Framework for Circular Interventions

Circular Skills Qualification Framework

Training Pack for SMEs

Indicator that it is a essential module for a certain profile

€ Range of expected module cost, with range from €, very low to €€€, higher cost

Individual insignia / rewards when the module is finished

Conducted visit to a case study (group)

Visit a case study with "detective game" (group)

Serious game - trivial quiz

Optional

Highly recommended
8 KEY ELEMENTS OF THE CIRCULAR ECONOMY
CIRCLE ECONOMY’S

CORE ELEMENTS

Prioritise Regenerative Resources

Stretch the Lifetime

Use Waste as a Resource
CIRCLE ECONOMY’S ENABLING ELEMENTS

Design for the Future
Rethink the Business Model
Incorporate Digital Technology
Team Up to Create Joint Value
Strengthen and Advance Knowledge
Circular skills qualification Framework

By using the methodology of developing **task-based qualifications**, and employing the Framework for circular interventions as a main foundation, the **Circular Construction Skills Qualification** framework has been developed.
Circular skills qualification Framework

- 9 tasks on Circularity
- 71 subtasks
- 84 Units of Learning Outcomes
- 41 Professional profile linked to Circularity
Task-based qualifications

Why?

- Practical perspective on required skills for circular construction
- Increased recognition of learned skills
- Learning outcomes for development of training
- Circularity applied to different fields in construction
Scope of circular construction skills qualifications

Included
- Integrating circular principles in existing work activities
- Focus on working as a member of the construction value chain
- Including interdisciplinary skills:
 - Collaboration
 - Research and evaluation
 - Education

Not included
- Detailed skills and knowledge
- Technology specific (e.g. details of installing heat pumps, specifics of designing pre-fabricated structures)
Task-based qualifications: How?

Tasks and subtasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Subtasks</th>
<th>81</th>
<th>2, 26, 27, 28</th>
<th>ME, CE, EL, AR</th>
<th>ME, CE, EL, AR, BS, HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Design for the future</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Design to reduce waste during production and use</td>
<td></td>
<td>2, 26, 27, 28</td>
<td>ME, CE, EL, AR</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Design with materials that enable multiple uses</td>
<td>5</td>
<td>27, 28</td>
<td>ME, CE, EL, AR, BS, HS</td>
<td></td>
</tr>
</tbody>
</table>
Task-based qualifications: How?

Tasks and subtasks

<table>
<thead>
<tr>
<th>2</th>
<th>Design for the future</th>
<th>81</th>
<th>2.26, 2.27, 2.28</th>
<th>ME, CE, EL, AR</th>
<th>ME, CE, EL, AR, BS, HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Design to reduce waste during production and use</td>
<td>81</td>
<td>2.26, 2.27, 2.28</td>
<td>ME, CE, EL, AR</td>
<td>ME, CE, EL, AR, BS, HS</td>
</tr>
<tr>
<td>2.2</td>
<td>Design with materials that enable multiple uses</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ULOs are statements regarding what a learner knows, understands and is able to do (including responsibility) on completion of a learning process, which are defined in terms of knowledge, skills and attitude/responsibility.
Task-based qualifications: How?

Unit of Learning Outcomes (ULO)

<table>
<thead>
<tr>
<th>ULO Nr.</th>
<th>Competence</th>
<th>Skills</th>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design with bio-based materials as an alternative for conventional construction materials</td>
<td>Select bio-based materials for the construction project at hand. Consider the purpose of the building and the context of the entire building solution, as well as construction requirements. When bio-based materials are not an option, select proper low-impact materials. Integrate use of the Material Circularity Indicator (make sure it is not higher than X). Ensure use of materials that have little to no volatile organic compounds (VOC) emissions.</td>
<td>Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably sourced wood, agricultural residues. Advantages and disadvantages of bio-based materials. Seven functional requirements of building walls. Alternative forms of concrete.</td>
</tr>
<tr>
<td>2</td>
<td>Enact measures that optimise material use to strive for material efficacy</td>
<td>Apply measures that optimise material use to construction projects. Combat underutilisation or surplus of materials by sharing products or assets and optimising their use.</td>
<td>General knowledge about measures that optimise material use in construction, such as 3D printing or accurate structural design/industrialized prefabricated products.</td>
</tr>
</tbody>
</table>

What competence does one need for performing the subtask?
Task-based qualifications: How?

Unit of Learning Outcomes (ULO\textsubscript{s})

<table>
<thead>
<tr>
<th>ULO Nr.</th>
<th>Competence</th>
<th>Skills</th>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design with bio-based materials as an alternative for conventional</td>
<td>Select bio-based materials for the construction project at hand</td>
<td>Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably</td>
</tr>
<tr>
<td></td>
<td>construction materials</td>
<td>Consider the purpose of the building and the context of the entire</td>
<td>sourced wood, agricultural residues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>building solution, as well as construction requirements</td>
<td>Advantages and disadvantages of bio-based materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When biobased materials are not an option, select proper low</td>
<td>Seven functional requirements of building walls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>impact materials</td>
<td>Alternative forms of concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrate use of the Material Circularity Indicator (make sure it is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>not higher than X)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensure use of materials that have little to no volatile organic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>compounds (VOC) emissions</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enact measures that optimise material use to strive for material</td>
<td>Apply measures that optimise material use to construction</td>
<td>General knowledge about measures that optimise material use in construction, such as 3D</td>
</tr>
<tr>
<td></td>
<td>efficacy</td>
<td>projects</td>
<td>printing or accurate structural design/industrialized prefabricated products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combat underutilisation or surplus of materials by sharing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>products; or assets and optimising their use</td>
<td></td>
</tr>
</tbody>
</table>

What competence does one need for performing the subtask?
What should one be able to do in order to gain competence?
Task-based qualifications: How?

Unit of Learning Outcomes (ULO)

<table>
<thead>
<tr>
<th>ULO Nr.</th>
<th>Competence</th>
<th>Skills</th>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design with bio-based materials as an alternative for conventional construction materials</td>
<td>Select bio-based materials for the construction project at hand. Consider the purpose of the building and the context of the entire building solution, as well as construction requirements. When biobased materials are not an option, select proper low-impact materials. Integrate use of the Material Circularity Indicator (make sure it is not higher than X). Ensure use of materials that have little to no volatile organic compounds (VOC) emissions.</td>
<td>Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably sourced wood, agricultural residues. Advantages and disadvantages of biobased materials. Seven functional requirements of building walls. Alternative forms of concrete.</td>
</tr>
<tr>
<td>2</td>
<td>Enact measures that optimise material use to strive for material efficacy</td>
<td>Apply measures that optimise material use to construction projects. Combat underutilisation or surplus of materials by sharing products or assets and optimising their use.</td>
<td>General knowledge about measures that optimise material use in construction, such as 3D printing or accurate structural design/industrialized prefabricated products.</td>
</tr>
</tbody>
</table>

- What competence does one need for performing the subtask?
- What should one be able to do in order to gain competence?
- What is prerequisite knowledge to become competent?
The main Tasks

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prioritise regenerative and efficient use of resources</td>
</tr>
<tr>
<td>2</td>
<td>Design for the future</td>
</tr>
<tr>
<td>3</td>
<td>Assemble/construct for the future</td>
</tr>
<tr>
<td>4</td>
<td>Rethink the business model</td>
</tr>
<tr>
<td>5</td>
<td>Stretch the lifetime</td>
</tr>
<tr>
<td>6</td>
<td>Use secondary resources</td>
</tr>
<tr>
<td>7</td>
<td>Incorporate digital technology</td>
</tr>
<tr>
<td>8</td>
<td>Collaborate to create joint value</td>
</tr>
<tr>
<td>9</td>
<td>Strengthen and advance knowledge</td>
</tr>
</tbody>
</table>
Circular construction skills qualification Framework
Applied to MGRFIE

1. PRIORITISE REGENERATIVE AND EFFICIENT USE OF RESOURCES

COMPETENCES:
Enact measures that reduce and optimise energy use through solutions on roofs and facades whilst taking into account building purpose and climate

SUBTASK:
Apply suitable energy efficiency measures to roofs and façades (taking into account building purpose and climate)

SKILLS:
Include energy efficiency measures in design of roofs, façades, and interior elements (e.g. insulation of roofs)
Include passive design techniques in design of roofs, façades, and interior elements (e.g. Solar orientation, skylight windows, shading)

PROFESSIONS:
Landscape architect
Green roof / green façade designer
Façade design engineer
Architect, Electrical engineer, Building automation engineer, Environmental engineer

KNOWLEDGE:
Smart solutions to spread demand throughout the day
Measures such as draught-proofing, airtightness, insulation, ventilation
Materials with lower thermal conductivity (e.g. sheep's wool, cellulose, earthwool)
Fundamental Training Packs SMEs

Ira Ivanova
Project Lead (EnEffect)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101033740
Approach

1. Identify the principles (key elements) you want to train on
2. Identify the relevant tasks and subtasks
3. Review the ULO’s provided
4. Design the training program for your organization
The Green Deal and the construction sector

Fit-for-55: RePower EU: Renovate Europe: EU Taxonomy: EPBD: RED II

Framework for circular economy
Pact for Skills

3 mill construction workforce in the next 5 years

- To prioritize ecological materials and to recreate value chains
- To renovate, regenerate, recover, reuse, recycle
- To digitalize
- To manage new construction sites
- To maintain and operate buildings sustainably
- To be local; minimal; optimal
- To interoperate and collaborate
- To innovate and improve workflow
BUS-GoCircular and the Fundamental Training Packs

Simple
Attractive
Easily accessible
Not expensive
Educating
Shareable
Open-source

Collaborative
BUS-GoCircular and the Fundamental Training Packs

Involved professions

<table>
<thead>
<tr>
<th>PROFILE</th>
<th>PLAN</th>
<th>PROTURE</th>
<th>CONSTRUCT</th>
<th>OPERATE</th>
<th>EoSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-collar</td>
<td>GENERAL</td>
<td>AR, CE, C, AM, FaM</td>
<td>PD, PM</td>
<td>C, BS, SS, PD</td>
<td>FaM</td>
</tr>
<tr>
<td></td>
<td>SPECIALISTS</td>
<td>UP, LA, FDE, EL, ME, EE, DA, BEC, SC</td>
<td>MS</td>
<td>HS, BEC, SC</td>
<td>DA, HS, BEC, CO</td>
</tr>
<tr>
<td>Blue-collar</td>
<td>GENERAL</td>
<td></td>
<td>Br</td>
<td></td>
<td>RM</td>
</tr>
<tr>
<td></td>
<td>SPECIALISTS</td>
<td>II, FM, FW, R, Gd, WI, BA, P, EI, RESI, RWT, HPI, VI</td>
<td></td>
<td></td>
<td>DeL, DeA</td>
</tr>
</tbody>
</table>

The table above categorizes involved professions into white-collar and blue-collar groups, with general and specialist roles for each category.
BUS-GoCircular and the Fundamental Training Packs

<table>
<thead>
<tr>
<th>TRAINING PLAN PROPOSAL (TP)</th>
<th>STAGES</th>
<th>PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>STARTING CIRCULARITY</td>
<td>Plan and Procure</td>
</tr>
<tr>
<td>TP2</td>
<td>CONSTRUCTION WORKS IN CIRCULARITY</td>
<td>Construct</td>
</tr>
<tr>
<td>TP3</td>
<td>CIRCULARITY IN INSTALLATIONS</td>
<td>Construct and Operate</td>
</tr>
<tr>
<td>TP4</td>
<td>ADVANCING CIRCULARITY</td>
<td>Plan, Procure and EoSL</td>
</tr>
<tr>
<td>Minium module of all TP</td>
<td>INTRODUCTION TO CIRCULAR ECONOMY IN CONSTRUCTION</td>
<td>All</td>
</tr>
</tbody>
</table>
BUS-GoCircular and the Fundamental Training Packs

CONSTRUCTION WORKS IN CIRCULARITY

| Module 1. INTRODUCTION TO CIRCULAR ECONOMY IN CONSTRUCTION |
| Key principles of circular economy |
| MATERIALS & WASTE |
| Main strategies related with materials in circular construction |

| Module 2. BUILD TO CLOSE THE LOOP OF MATERIALS |
| Work with regenerative materials: wood, straw, rammed earth bricks, biobased insulation |

| Module 3. BUILD TO REDUCE IMPACT: LOCAL, LOW IMPACT, NON-TOXIC AND/OR NON-CRITICAL MATERIALS |
| How to build with low impact materials for coating, sealant, adhesive (no VOC emissions, detachable) |

| Module 4. BUILD TO REDUCE WASTE IN SITE AND IN EOSL (PART1) |
| Modular construction systems and their procedures for assembly (incl. prefabricated modules); removable joints; demountable techniques |

| Module 5. BEST PRACTICES AT THE CONSTRUCTION SITE TO REDUCE WASTE AND PROMOTE RECYCLING & REUSE |
| Observation of local and national regulations for waste management and landfill rules; protection of materials on site |

| Module 6. DIGITIZATION |
| BIM for planning and management; Digital material passes; Digital twins |

| Module 7. INSTALL ENERGY EFFICIENCY MEASURES IN BUILDINGS |
| Principles of low- energy to nearly- zero energy buildings (nZEB) & passive houses |

| Module 8. STRETCH THE LIFETIME |
| Maintenance and repair |

| Module 9. RETHINK THE BUSINESS MODEL |
| Business models of maintenance and repair services (best practices) |
Module 1. INTRODUCTION TO CIRCULAR ECONOMY IN CONSTRUCTION

The 3 core + 5 enabling principles
Module 1. INTRODUCTION TO CIRCULAR ECONOMY IN CONSTRUCTION

The 3 core + 5 enabling principles

Choose renewable resources
Be economical and use it as long as possible
Use waste as raw material
Develop and disseminate knowledge
Integrate digital techniques
Design for the future
Develop the business model
Work together to create collective value
Module 2. BUILD TO CLOSE THE LOOP OF MATERIALS

Material pyramid

Earthen materials
Hemp
Hemp +lime
Timber
Straw
Module 3. BUILD TO REDUCE IMPACT: LOCAL, LOW IMPACT, NON-TOXIC AND/OR NON-CRITICAL MATERIALS

EN 16785-1 verifies biobased content

<table>
<thead>
<tr>
<th>Biobased material type</th>
<th>Ingredients in biobased adhesives and sealants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymers:</td>
<td>Soy protein, Starch esters, Polyamide, Polylactide</td>
</tr>
<tr>
<td>Tackifiers:</td>
<td>Pine rosin, Terpene, Citrus</td>
</tr>
<tr>
<td>Waxes</td>
<td>Soy, Castor, Dimerized fatty acids</td>
</tr>
</tbody>
</table>

EN 13432 evaluates biodegradability
Module 4. BUILD TO REDUCE WASTE IN SITE AND IN EOSL (PART1)

BUILD WITH MODULAR STRUCTURES

Use reversible joints
Module 5. BEST PRACTICES AT THE CONSTRUCTION SITE TO REDUCE WASTE AND PROMOTE RECYCLING

CDW SORTING, REUSE AND RECYCLE
Module 6. DIGITIZATION

BIM: USE OF MATERIAL PASSPORTS

“…waste is material without identity…”
Thomas Rau
Module 7. INSTALL ENERGY EFFICIENCY MEASURES IN BUILDINGS

PASSIVE HOUSE PRINCIPLES

- Building envelope
- Airtightness
- Solar gain
- Reduced thermal bridges
- Ventilation
- + RES (nZEB)

Source: Gambrick
Module 8. STRETCH THE LIFETIME

EMPLOYING THE “R” STRATEGY

Repair and maintenance

Reuse of buildings

Source: Rotor

Source: PC Caritas Melle, Belgium
Module 9. RETHINK THE BUSINESS MODEL

PRODUCTS AS SERVICE

Light as a service: PHILIPS
Module 1:

M1-Introduction to Circular Economy in Construction

In this module, we will introduce you to the principles of circular economy in the construction industry: the Circular Key Elements to guide you through the opportunities and challenges of making the built environment sustainable in a circular way, learning from real-life national and European case studies.

Circularity has become an important issue in solving the scarcity of materials and non-biodegradable waste management.Circularity has a wide range of other valuable aspects so the applications can be very diverse. What can circularity mean for your work in the built environment? This module guides you through what actual and new opportunities exist when applying circularity.
Importance and benefits from training in circularity for SMEs in construction

Silviya Pavlova
MBA CMC Assoc CIPD, Certified Management Consultant in Strategy and International Business Development | Founder, PropTech Bulgaria & CSEE

PropTech

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101033740
Speaker Info

Silviya Pavlova MBA CMC Assoc CIPD

Internationally Certified Management Consultant in Strategy and International Business Development

Founder, PropTech Bulgaria & CSEE PropTech
Importance and benefits from training in circularity for SMEs in construction

• How can SMEs in the construction sector stimulate circular skills within their organisations and why is it important?

• 4 Success Stories in Circular Tech for the Urban Environment
STACEY MATRIX:
TRADITIONAL LARGE CORPORATES

- **EU Taxonomy**
 - large companies
 - < 250 employees
 - ≤ € 40M annual turnover
 - < € 20M balance sheet
 - reporting from 2025

- **Chaotic**
 - disintegration or massive avoidance

- **Complex**
 - Co-creation: collaborative ideation, visioning, design exploration, iterative improvement, knowledge management

- **Complicated**
 - EU Taxonomy
 - Financial institutions
 - publicly listed asset mngt companies
 - reporting from 2024

- **Simple**
 - Telling: rational decision-making and control
 - Consulting: judgemental decision-making, ideological control

Methods, tools, technology

- Close to agreement
 - Far from agreement

- Requirements, business goals

- Close to certainty

STACEY MATRIX:
INNOVATIVE CORPORATES & START-UPS

- turn waste into a new product
- circular BMS partially recyclable materials
- product-as-a-service BMS

Bus
GoCircular

Requirements, business goals

Close to agreement

Far from agreement

Complex

Co-creation: collaborative ideation, visioning, design exploration, iterative improvement, knowledge management

Simple

Telling: rational decision-making and control

Methods, tools, technology

Far from certainty

Close to certainty

Complicated

Consulting: judgemental decision-making; ideological control

Chaotic
disintegration or massive avoidance
4 Success Stories in Circular Tech for the Urban Environment

Based on the largest database of European-origin PropTech solutions built by PropTech Bulgaria, amounting to 6,000+ tech companies
Success Stories

https://wasteful.earth/
BULGARIA
Success Stories

www.biyu.world
NETHERLANDS

carrot.tech
NORWAY

www.compocity.help
HUNGARY
Shaping a Circular Sustainable Future

Q and A
10 minutes

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101033740
Shaping a Circular Sustainable Future

Breakout Session
15 minutes
Group Division

Group 1 - Ira Ivanova
Group 2 - Otis Schwab
Group 3 - Silviya Pavlova
Group 4 - Sreeja Raghunathan
BREAKOUT SESSION

- Brainstorm discussion supported by moderators using Miro Board
- 4 Groups
- 2 Questions
- [Link to Miro Board](#)
Which of the presented results from the BUS-GoCircular project do you consider having most potential for successfully supporting SMEs in the integration of circle economy principles?
What is your key takeaway from the session?
Conclusion & Take aways

10 minutes
Fundamental Training Pack for SMEs

Construction skills qualification framework

Shaping a Circular Sustainable Future

Content and methodology proposal “BUS-GoCircular Fundamentals Training Packs”

In this report, four different training plans for designing the packs are developed according to initial skills and according to the needs of two different profiles of SMEs. Profiles who need a global and conceptual vision and those who need specific practical tools, detecting the aspects of the framework that affect them most. These open source training plans (and future packs developed) will be available on the BGC website for anyone to use in their company.

CIRCULARITY, GAMES

Learning skills to operate a circular economy
BUS Go Circular’s outcomes

<table>
<thead>
<tr>
<th>BUS Go Circular’s outcomes</th>
<th>Webinar to know more about</th>
<th>Date</th>
</tr>
</thead>
</table>
| - Training materials for local authorities
 - Guide for public authorities “Stimulating demand for circular construction skills” | **Local authorities**’ policy toolkit to promote circular construction skills | 17th of October
 (Recording available) |
| - Circular Construction Skills framework
 - Fundamental training packs for SMEs | Unlocking the potential of **SMEs**: A holistic framework to train SME-workforce in circular construction | 14th of November |
| - Continuous Professional Development framework for Circular Construction Skills
 - Train the Trainers session | Are **architects** ready for circular transition? Continuous Professional Development tools for Europe | 28th of November |
| - Units Of Learning
 - Fundamental training packs for SMEs
 - Circular Construction Skills framework
 - Train the Trainers session | New Training Materials and Methodologies for Up-Skilling in Circular Economy in Construction for **Training Centres** | 14th of December |
Register for the upcoming webinars

Link in the Chat
Thank You!

For more information about the BUS Go-Circular project, visit our website

Share your thoughts about this webinar through our contact form

And check out our other training programmes

Follow us

https://twitter.com/BusGoCircular

https://www.linkedin.com/company/busgocircular

https://www.youtube.com/channel/UCXu4Rjs5WDXBE-yqda5kt5A

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101033740
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101033740
Thank you!