

Application of the SUSTAIN Competence Quality Standard to specific sectors and technologies

26-10-2023 Jan Cromwijk - ISSO

Skill gap analysis

- \checkmark Describe the methodology used to develop the skills gap analysis
 - ✓ BUS-NL applies the PROF/TRAC skills gap analysis in combination with the outputs of the <u>Train4Sustain CEN workshop agreement</u>.

Impression of the setup for SkillsMapping

	D	E	F	G	H A	S AT	AU	AV	AW	AX	AY	AZ B	AB	BE BC	BD	BE	BF	BG	BH	BI	BJ
1		TECHN	NOLOGY, INTERI	DISCIPLINA	RY SKILLS AND PROFESSIONS		Air	Con	ditior	ning	Insta	llers				Air	tight	build	der		
	Category 1	Category 2	Category 3	Code	Areas of expertise	current	R	Gap	1	2	3	4 0	,	current	æ	Gap	1	2	3	4	5
2	-		· •	-		-	-	-	-	-	-	-	v ,	-	-	-	-	-	-	-	-
3	Environmen	tEN Energy	EN1 Energy	EN1.1	Energy Simulation	0	1	1					Т	0	1	1					
4	Environmen	I EN Energy	EN2 Energy	EN2.1	Smart grid systems	0	1	1						0	0	0					
5	Environmen	I EN Energy	EN2 Energy	EN2.2	Home automation/Domotic systems	0	3	3						0	0	0					
6	Environmen	IEN Energy	EN2 Energy	EN2.3	Building Management Systems (BMS)	0	3	3						0	0	0					
7	Environmen	tEN Energy	EN2 Energy	EN2.4	Renewable Energy communities (sma	0	1	1						0	0	0					
8	Environmen	tEN Energy	EN3 Energy	FEN3.1	Heating and cooling systems	0	3	3						0	1	1					
9	Environmen	IEN Energy	EN3 Energy	EN3.2	Ventilation systems	0	3	3						0	2	2					
10	Environmen	IEN Energy	EN3 Energy	EN3.3	Hot water systems (DHW)	0	3	3						0	0	0					
11	Environmen	IEN Energy	EN3 Energy	FEN3.4	Electric heating systems	0	3	3						0	0	0					
12	Environmen	IEN Energy	EN3 Energy	EN3.5	Heat pump systems and geothermal e	0	3	3						0	0	0					
13	Environmen	IEN Energy	EN3 Energy	FEN3.6	Solar thermal energy systems for heat	0	3	3						0	0	0					
14	Environmen	IEN Energy	EN3 Energy	EN3.7	Solar power systems for electricity ge	0	3	3						0	0	0					
15	Environmen	tEN Energy	EN3 Energy	FEN3.8	Combined Heat and Power (CHP) gene	0	3	3						0	0	0					
16	Environmen	tEN Energy	EN3 Energy	FEN3.9	Mini wind power generation	0	3	3						0	0	0					
17	Environmen	tEN Energy	EN3 Energy	FEN3.10	Energy storage systems (long duration	0	3	3						0	0	0				_	
18	Environmen	tEN Energy	EN4 Energy	FEN4.1	Thermal insulation	0	1	1						0	4	4					
19	Environmen	IEN Energy	EN4 Energy	FEN4.2	Building air tightness	0	1	1						0	4	4					
20	Environmen	IEN Energy	EN4 Energy	FEN4.3	Window and glazing systems	0	1	1						0	4	4					
21	Environmen	IEN Energy	EN4 Energy	FEN4.4	Solar shading systems	0	1	1						0	2	2					
22	Environmen	tEN Energy	EN4 Energy	FEN4.5	Passive systems for cooling and heatir	0	3	3						0	0	0					
23	Environmen	tEN Energy	EN4 Energy	FEN4.6	Energy saving strategies for lighting	0	1	1						0	0	0					
24	Environmen	tEN Energy	EN4 Energy	FEN4.7	Mitigation strategies for urban therma	0	1	1						0	0	0					
25	Environmen	I EN Energy	EN4 Energy	FEN4.8	Building occupancy behavior	0	1	1						0	0	0					
26	Environmen	WA Water	WA1 Wate		loor water use management	0	0	0						0	0	0					
27	Environmen	WA Water	WA1 Wate		or water use management	0	0	0						0	0	0					

NL

Links with Train4Sustain CEN workshop agreement.

	Professions	▪ Beroep (NL)	▼ Fase	▼ T4S nummer ↓1 Beroepsgroep
4	Architect	Architect	Ontwerp	1 Bouw & architectuur
5		Interieur architect	Ontwerp	1 Bouw & architectuur
6	Mechanical Engineer	Engineer W-installaties & GBS	Ontwerp	2 Installatie
7		Technisch Tekenaar installatie	Ontwerp	2 Installatie
8	Designer	Technisch Tekenaar bouw	Ontwerp	3 Bouw & architectuur
9	Architectural Technologist	Bouwkundig engineer	Ontwerp	3 Bouw & architectuur
10	Structural engineer	Constructeur	Ontwerp	3 Bouw & architectuur
11	Electrical Engineer	Engineer E-installaties & data inst.	Ontwerp	4 Installatie
12	Building Automation Engineer	Engineer gebouwautomatisering	Ontwerp	4 Installatie
13	Lighting specialist	Verlichtingsdeskundige	Ontwerp	4 Installatie
14		Engineer brandveiligheid	Ontwerp	4 Installatie
15	ICT Engineer	ICT Engineer & data analyse	Ontwerp	4 IT
16	Geologist	Geoloog & bodemdeskundige	Ontwerp	5 Omgeving (bodem, groen)
17		Landmeter	Ontwerp	5 Omgeving (bodem, groen)
18	Environmental Engineer	Milieudeskundige	Ontwerp	5 Omgeving (bodem, groen)
19	Landscape Architect	Landschapsarchitect & hovenier	Ontwerp	5 Omgeving (bodem, groen)
20	Landscaper facade	Specialist groene daken en gevels	Ontwerp	5 Omgeving (bodem, groen)
21	Building energy consultants	Energieprestatie adviseur U, W	Alle fasen	6 Energie engineering & advies
22	Energy Auditor	Energie Maatwerkadviseur	Exploitatie	6 Energie engineering & advies
23	Daylighting specialist	Daglichtspecialist	Ontwerp	6 Energie engineering & advies
24	Energy engineer	Energie engineer	Ontwerp	6 Energie engineering & advies
25	Simulation experts	Energiesimulatie expert	Ontwerp	6 Energie engineering & advies

Links with Train4Sustain CEN workshop agreement.

T4S-ID <mark>↓</mark> †	TS4 Specialism_en	Specialisme_nl tbv BUS_NL
	SOCIETY	WELZIJN (SOCIETY)
AC	AC Accessibility	Toegankelijkheid
AC1	Barrier free accessibility	Inclusief ontwerpen & integrale toegankelijkheid
AD	Adaptation and resilience to climate change	Klimaatadaptief bouwen
AD1	Climate change resilient buildings	Klimaatbestendig bouwen (hitte, extreme neerslag)
со	Comfort and well being	Comfort en gezondheid
CO2.1	Indoor Thermal Comfort	Binnenklimaat en binnenluchtkwaliteit
CO2.2	Outdoor Thermal Comfort	Buitenklimaat (thermisch comfort en luchtkwaliteit in de stad)
CO2.3	Building Physics	Bouwfysica
CO3.1	Daylighting	Daglicht toepassing (binnen)
CO3.2	Indoor lighting	Verlichting (binnen)
CO3.3	Outdoor lighting	Verlichting buiten, oriëntatie- & gevelverlichting
CO4.3	Indoor noise management	Beheersing geluid binnen / akoestische isolatie / akoestiek
CO4.4	Environmental noise management	Beheersing omgevingslawaai
CO6.1	Ergonomic and Active Furnishing	Ergonomie van de inrichting
SE	Services for inhabitants	Services voor gebruikers
SE1.1	Communication services	Communicatie diensten
SE2.2	Infrastructure and connectivity	Laadinfrastructuur EV
SE2.3	Internet Of Things	Internet of Things
MO	Mobility	Duurzame mobiliteit
MO1.1	Sustainable mobility strategies	Duurzame mobiliteitsoplossingen, EV

Result

Specialist Afval & logistiek bouwplaats Installateur W/E DF3 CO4.3 WA2.1 EN2.3 UWR1 ID4.1 SE2.2 EN2.4 MF1.1 EN3.12 IDT1 /R MA3.1 EN3.17 .2 IDT3 IDT3 EN3.3 IDT EN3.4 SC1.1 IS5.1 ID1 EN3.5 EN3.6

This project has received funding from the European Union's LIFE programme under grant agreement No 101077358

MA3.1

7

Learning outcomes for development of training

Circularity applied to different fields in construction

How does a Task based Qualification work?

How does a Task based Qualification work?

What is a task based Qualification?

awakening | relevant | innovative | scalable | equitable

Tasks and subtasks

2 Desi		Design for	the future	81		
2.1			Design to reduce waste during production and use	2, 26, 27, 28	ME, CE, EL, AR	
2.2			Design with materials that enable multiple uses	5	ME, CE, EL, AR, BS, HS	
Task						
		Г	Subtasks			

Tasks and subtasks

ULOs are statements regarding what a learner **knows**, **understands** and is **able to do** (including responsibility) on completion of a learning process, which are defined in terms of **knowledge, skills and attitude/responsibility**

Unit of Learning Outcomes (ULOs)

ULO Nr.	Competence	Skills	Knowledge
1	Design with bio-based materials as an alternative for conventional construction materials	Select bio-based materials for the construction project at hand Consider the purpose of the building and the context of the entire building solution, as well as construction requirements When biobased materials are not an option, select proper low impact materials Integrate use of the Material Circularity Indicator (make sure it is not higher than X) Ensure use of materials that have little to no volatile organic compounds (VOC) emissions	Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably sourced wood, agricultural residues Advantages and disadvantages of biobased materials Seven functional requirements of building walls Alternative forms of concrete
2	Enact measures that optimise material use to strive for material efficacy	Apply measures that optimise material use to construction projects Combat underutilisation or surplus of materials by sharing products or assets and optimising their use	General knowledge about measures that optimise material use in construction, such as 3D printing or accurate structural design/industrialized prefabricated products

Unit of Learning Outcomes (ULOs)

ULO Nr.	Competence	Skills	Knowledge
1	Design with bio-based materials as an alternative for conventional construction materials	Select bio-based materials for the construction project at hand Consider the purpose of the building and the context of the entire building solution, as well as construction requirements When biobased materials are not an option, select proper low impact materials Integrate use of the Material Circularity Indicator (make sure it is not higher than X) Ensure use of materials that have little to no volatile organic compounds (VOC) emissions	Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably sourced wood, agricultural residues Advantages and disadvantages of biobased materials Seven functional requirements of building walls Alternative forms of concrete
2	Enact measures that optimise material use to strive for material efficacy	Apply measures that optimise material use to construction projects Combat underutilisation or surplus of materials by sharing products or assets and optimising their use	General knowledge about measures that optimise material use in construction, such as 3D printing or accurate structural design/industrialized prefabricated products
	What competence does one need for performing the subtask?	What should one be able to do in order to gain competence?	

14

Unit of Learning Outcomes (ULOs)

ULO Nr.	Competence	Skills	Knowledge		
1	Design with bio-based materials as an alternative for conventional construction materials	Select bio-based materials for the construction project at hand Consider the purpose of the building and the context of the entire building solution, as well as construction requirements When biobased materials are not an option, select proper low impact materials Integrate use of the Material Circularity Indicator (make sure it is not higher than X) Ensure use of materials that have little to no volatile organic compounds (VOC) emissions	Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably sourced wood, agricultural residues Advantages and disadvantages of biobased materials Seven functional requirements of building walls Alternative forms of concrete		
2	Enact measures that optimise material use to strive for material efficacy	Apply measures that optimise material use to construction projects Combat underutilisation or surplus of materials by sharing products or assets and optimising their use	General knowledge about measures that optimise material use in construction, such as 3D printing or accurate structural design/industrialized prefabricated products		
	What competence does one need for performing the subtask?	What should one be able to do in order to gain competence?	What is prerequisite knowledge to become competent?		

15

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101033743"

Technology based Qualification With several levels of detail

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101033743"

Example from SEEtheSkills

PV Installation

	Nr	Tasks	Sub-tasks
	×	· · · · · · · · · · · · · · · · · · ·	n de la companya de 💌
	EN3.7.1	N3.7.1 Understand the importance of solar power systems for electricity generation	
			Recall the main types of PV systems (e.g. grid tied, off gried, hybrid, w/o battery storage)
\mathbf{V}			Discuss the feasibility studies of solar power systems for electricity generation within a design team
			Understand the influence of external aspects on the performance (e.g. orientation, shadowing)
	EN3.7.1	Understand the importance of s	olar power systems for electricity generation
			Recognize or applies the main installation types and building integration
$\mathbf{\vee}$			Expound the solar radiation exposure and energy production
			Analyse the feasibility studies of solar power systems for electricity generation within a design team
			Comprehend the influence of external aspects on the performance (e.g. orientation, shadowing)

SKSI

RPEAU//DA

1550

:::: S T U

Example from BUS-NL network on heatpumps

Tasks	Sub-tasks	ULO Nr.
Advise ab	out heat pump installation (first mechanic S&O)	
	Advise on the technical aspects of climate control systems	4;5
1	Identify points for attention and risks surrounding the heat pump system	6
]	Advise solutions around the heat pump system	6
Advise on	the heat pump installation (work manager)	
	Advise on the operation and interaction of different types of heat pumps and their areas of application	1;2;7;8;9
]	Advise on the technical aspects of climate control systems	10;4;62
]	Advise on the technical feasibility of a heat pump system	1;2;3;11
]	Identify points for attention and risks surrounding the heat pump system	6
]	Advise solutions around the heat pump system	1;6;12;20;22;23;24
Advise on	the heat pump installation - preconditions (work manager)	
	Apply the applicable legislation and regulations (soil energy systems)	13;14;25
]	Applies the applicable laws and regulations (other)	15;13;26;27;28;29;30;31;32;33;34
]	Determine energetic and economic feasibility of the heat pump system	16;35;36
]	Determine and recommend about the energy performance and monitoring	17;21
	Determine and advise on the critical parameters (construction and comfort) of the home/object	1;18;23;37
Design an	d dimension the heat pump installation/ heat pump system (work manager)	
	Determine the structural situation and collects necessary data about the space required by the	100;101;89;90;102;5;74;103;104;105
	installation, the necessary measures regarding noise, ventilation and supply temperature	;18;7;19;38;39;20
	Choose from the different system concepts	100;101;89;90;102;5;74;103;104;105
		;1;40;41;42;43;44;45

Example of a qualification focussed on principles

Scope of circular construction skills qualifications

Included

- Integrating circular principles in existing work activities
- Focus on working as a member of the construction value chain
- Including interdisciplinary skills:
 - \circ Collaboration
 - \circ Research and evaluation
 - \circ Education

Not included

- Detailed skills and knowledge
- Technology specific (e.g. details of installing heat pumps, specifics of designing prefabricated structures)

The main Tasks

	1	Prioritise regenerative and efficient use of resources
	2	Design for the future
,	3	Assemble/construct for the future
-	4	Rethink the business model
;	5	Stretch the lifetime
(6	Use secondary resources
-	7	Incorporate digital technology
	8	Collaborate to create joint value
9	9	Strengthen and advance knowledge

21

Task 1

1	Prioritise regenerative and efficient use of resources		
1.1	Design with bio-based, non-toxic and/or non-critical materials	1, 2, 3, 4	
1.2	Replace energy sources with less impactful alternatives	8	
1.3	Apply suitable energy efficiency measures to the building design (taking into account building purpose and climate)	9	
1.4	Generate energy from renewable sources - e.g. solar, sustainable biomass	10	
1.5	Apply measures that replace freshwater with less impactful alternatives	6	
1.6	Enact water efficiency measures	7,15	
1.7	Source bio-based, reusable, non-toxic and non-critical materials	1, 2, 3, 4, 5, 36	
1.8	Source local and lightweight materials	74	

22

Process targeted Qualification

awakening | relevant | innovative | scalable | equitable

Step 1 – Define Main Specialisms

awakening | relevant | innovative | scalable | equitable

- BIM application 6x
- BIM utilisation 5x
- BIM support 2x

• Differentiate between 'making' and 'using' BIM

ID	Specialism	Group
BA-1	BIM Management	
BA-2	BIM Project Management	
BA-3	BIM Coordination	
BA-4	BIM Modelling	BIM Application
BA-5	BIM Engineering	
BA-6	BIM Programming	
BU-1	Capturing and Representing	
BU-2	Planning and Conceptualizing	
BU-3	Simulating and Quantifying	
BU-4	Constructing and Fabricating	BIM Utilisation
BU-5	Operating and Maintaining	
BU-6	Monitoring and Controlling	
BU-7	Controlling and Extending	
BS-1	Project Data Management	DIM Support
BS-2	System Administration	Bivi Support

awakening | relevant | innovative | scalable | equitable

Step 2&3 – Define professions and Relate to specialisms

- Designers: Architect
- Contractors: Project Manager, Foreperson
- Clients: Building Owner/Operator
- Public Administration: Building Inspector

awakening | relevant | innovative | scalable | equitable

• Mapping current situation and future situation

Step 4 – Add tasks and subtasks

awakening | relevant | innovative | scalable | equitable

- Groun ID Specialism Task Subtasl BA-1 task 1 BA-1 task 1.1 BA-1 task 1.2 BA-1 task 2 BA-1 task 3 BA-1 **BIM Management** BA-1 task 4 BA-1 task 4.1 BA-1 task 4.2 BA-1 task 4.3 BA-1 task ! BA-1 task 5.1 BA-1 task 5.2 BA-1 task 6 BA-2 task ' RA-2 tack 1 **BIM Application** BA-2 task 1.2 BIM Project BA-2 task 1.3 BA-2 Management BA-2 task 1.4 BA-2 tack BU-5 task 1.1 BU-5 task 1 BU-5 task 1.2 BU-5 task 1.3 BU-5 task 1.4 **BIM Utilisation** BU-5 task 1 5 Operating and BU-5 task 1.6 BU-5 Maintaining BU-5 task 2 BU-5 task 2.1 BU-5 task 2.2 BU-5 task 3 BU-5 task 4 BU-5 task 5 BU-5 task 5.1 BU-5 task 5.2
- Each specialism gets their own set of tasks and subtasks
- Duplication of tasks is possible

Step 5 & 6 – Define and add ULOs

awakening | relevant | innovative | scalable | equitable

Result

https://www.ariseproject.eu/d-3-3-qualification-framework-of-sustainable-energy-skills-leveraged-by-digitalisation-incl-bim/

Use of data in the BUILD UP Skills advisor-app

Colophon

Copyright © 2023 by BUS-NL consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BUS-NL Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement.

ISSO

