

LEARNING APPROACHES FOR NEW GENERATION EPCS AND SMART READINESS INDICATOR: AN INVITATION FOR DISCUSSION

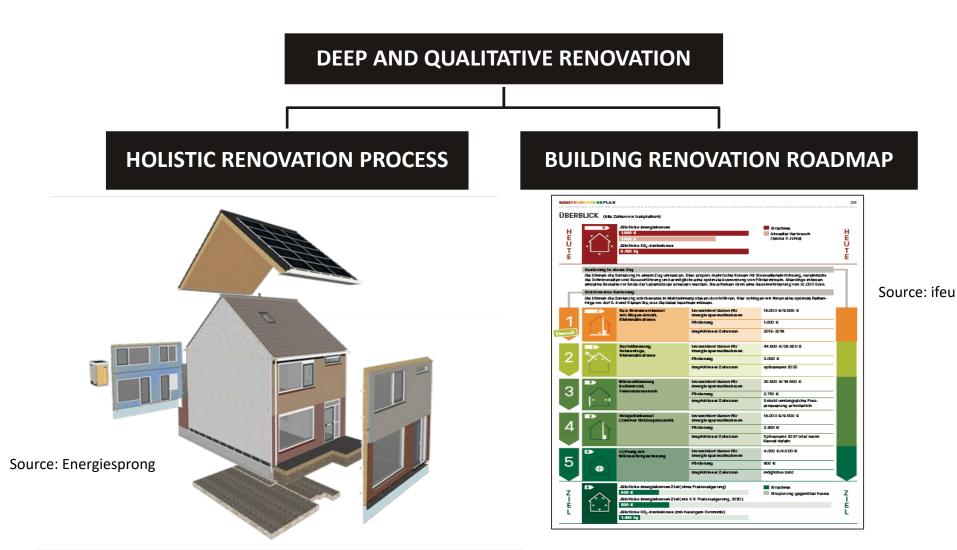
BUILD UP Skills EU Exchange Meeting

Dragomir Tzanev, Center for Energy Efficiency EnEffect

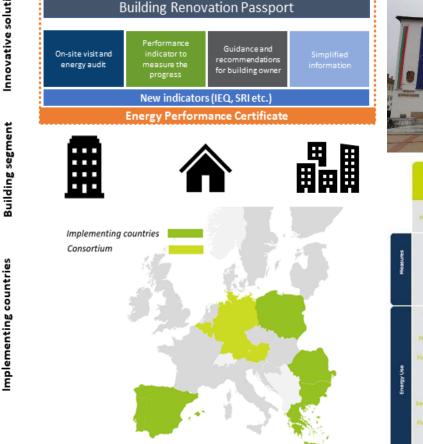
Brussels, 26.10.2023

CERTIFICATE RECAST

 $\langle \bigcirc \rangle$


These projects have received funding from the European Union's Horizon 2020 and Horizon Europe research and innovation programmes. The European Union is not liable for any use that may be made of the information contained in the documents prepared by the projects' consortia, which are merely representing the authors' view.

iBROAD2EPC



Innovative solution

Building

countries

Implementing

ENERGY CLASS	ENERGY CLASS	ENERGY CLASS	ENERGY CLASS
С	В	Α	A+
Tour Bailding Moment of delivery	Renovation Step 1 External financing	Renovation Step 2	Renovation Step 3
	Heacures • External Wall insulation • Substitution of the old windows • Roof insulation	Measures • Insulation of the cellar ceiling • Substitution of the heating system by a heating pump	Meacures • Installation of a heat pump for domestic hot water • Installation of a heat recovery unit • Installation of a photovoltaic system
Primary Energy Demand	Primary Energy Demand	Primary Energy Demand	Primary Energy Demand
283 kWh/m ² a	206 kWh/m²a	103 kWh/m ² a	31 kWh/m²a
Main Energy Source	Main Energy Source	Main Energy Source	Main Energy Source
Oil	oil	Electricity	Electricity
Final Energy Demand Hain Source	Final Energy Demand Main Source	Final Energy Demand Main Source	Final Energy Demand Main Source
180 kWh/m ² a	110 kWh/m ² a	7 kWh/m ² a	4 kWh/m ² a
Second Energy Source	Second Energy Source	Second Energy Source	Second Energy Source
Electricity	Electricity	Electricity	Electricity
Final Energy Demand second Source	Final Energy Demand second Source	Final Energy Demand second Source	Final Energy Demand second Source
12 kWh/m²a	14 kWh/m²a	13 kWh/m²a	6 kWh/m²a

	ENERGY CLASS	ENERGY CLASS	ENERGY CLASS	ENERGY CLASS
	G	F	В	В
	Your Building Moment of delivery	Renovation Step 1 Immediately When Boiler needs to be exchanged	Renovation Step 2 2025 - 2030 Higher Comfort Demands	Renovation Step 3
		Measures	Measures	Measures
Measures		 Substitution of the heating system by a biomass boiler Connection to a existing heating system 	Internal wall insulation Substitution of the old windows Roof insulation Improve the air permeability of the envelope	 Insulation of the cellar celling Installation of a heat recovery unit
	Primary Energy Demand	Primary Energy Demand	Primary Energy Demand	Primary Energy Demand
	252 kWh/m ² a	207 kWh/m ² a	76 kWh/m ² a	61 kWh/m²a
	Main Energy Source	Main Energy Source	Main Energy Source	Main Energy Source
	OI	Wood	Wood	Wood
	Final Energy Demand Main Source	Final Energy Demand Main Source	Final Energy Demand Main Source	Final Energy Demand Main Source
Energy Use	199 kWh/m²a	187 kWh/m ² a	62 kWhym²a	47 kWh/m ² a
	Second Energy Source	Second Energy Source	Second Energy Source	Second Energy Source
	Electricity	Electricity	Electricity	Electricity
	Final Energy Demand second Source	Final Energy Demand second Source	Final Energy Demand second Source	Final Energy Demand second Source
	11 kWh/m ² a	3 kWh/im ² a	3 kWh/m²a	4 kWh/m²a
	Energy Bill	Energy Bill	Energy Bill	Energy Bill
	91199 <i>m</i> e/a	40500 //B/a	14576 лв/a	11696 /ns/a
_	Carbon Emissions	Cardona Saulasiana	Carbon Emissions	Carbon Emissions

EnEffect

CrossCert

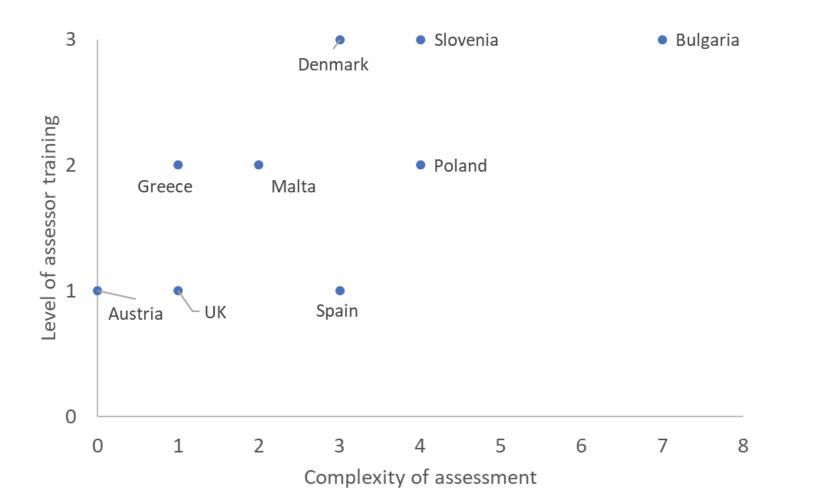
WP4 Increasing the value of EPCs

T4.3 Linking next-generation of EPCs to energy audits, logbooks and BRPs

AEA

- How the new EPC approaches can interact with energy audits, logbooks, or BRPs to boost the energy building renovation
- Review of building renovation roadmaps and logbooks
- Implementation of energy audits
- Evaluation, recommendations and guidelines will be derived to integrate all these tools to promote building energy renovation

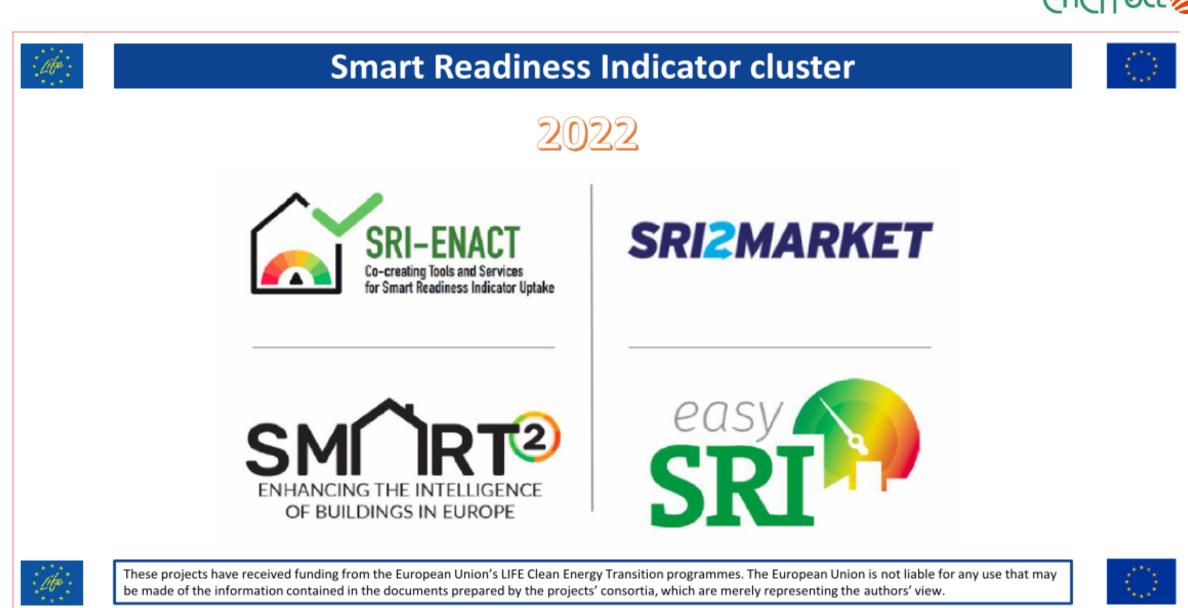
Numb.	Deliverable name	WP	Lead	Туре	Dissem.	Delivery date
D4.3	Linking next-generation of EPCs to energy audits, logbooks and BRPs	4	AEA	R	PU	M31


crossCert

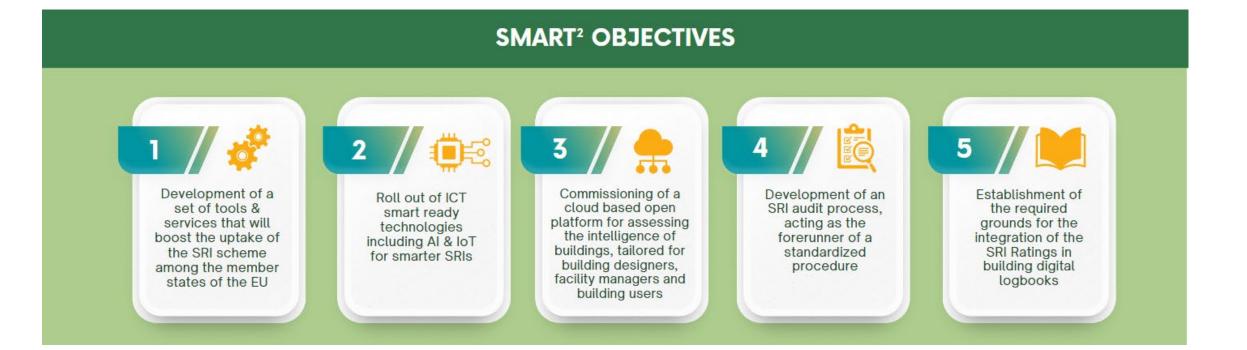
CrossCert

U-Cert

The U-CERT Comparison and calculation toolkit for National Annexes.


The U-CERT Building Operation Rating

The U-CERT Service tool for product suppliers, transforming product information into suitable input for energy calculations



Smart²

SRI Assessment Tools

IMPACTS

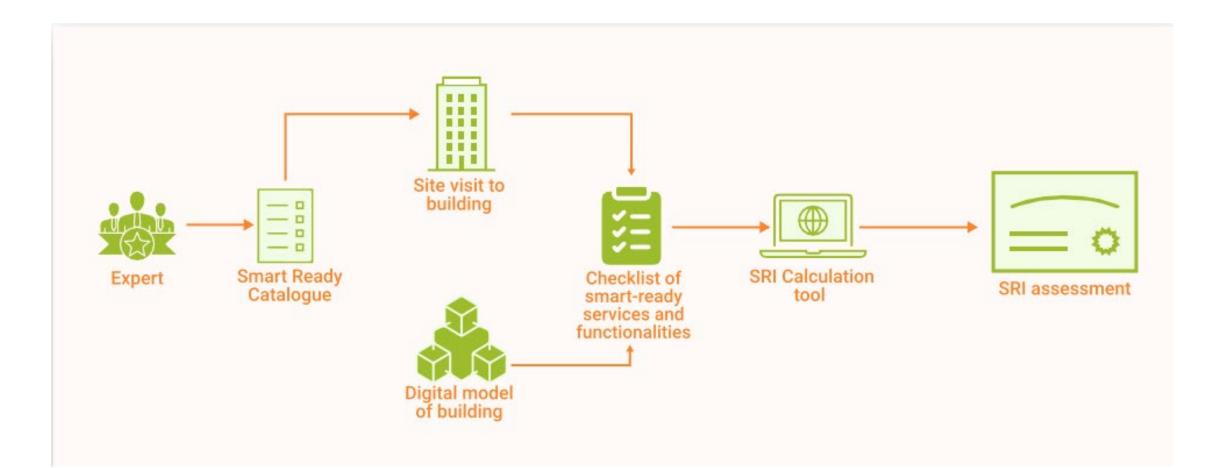
		Energy efficiency	Maintenance and fault protection	Comfort	Convenience	Health and well-being	Information to occupants	Energy flexibility & storage	SRI
	Total	39%	18%	60%	71%	48%	59%	0%	42%
	Heating	32%	18%	62%	55%	24%	74%	0%	
	Sanitary hot water	17%	0%	45%	70%	67%	83%	0%	
S	Cooling	65%	51%	78%	72%	61%	55%	0%	
VIN	Controlled	41%	0%	55%	60%	34%	44%	0%	
OMAI	- , - Lighting	85%	14%	90%	100%	83%	15%	0%	
DO	Dynamic building envelope	10%	0%	31%	56%	22%	46%	0%	
	Electricity	10%	0%	-		-	68%	0%	
	Electric vehicle charging	-	38%	-	82%	-	84%	0%	
	Monitoring and control	52%	43%	62%	72%	45%	64%	0%	

EUEllecr

SRI Assessment Tools

+ D^2EPC Building Performance Module-SRI Calculation Subcomponent

- + EPC-RECAST BIM supported SRI assessment tools
- + Smart-Ready-Go®
- + Smart2B Smart performance assessment & Advisor (SPA&A)
- + SRI2MARKET platform
- + SRI Calculator in IsZEB Certify
- + U-CERT Smart Readiness Indicator (SRI) digital tool

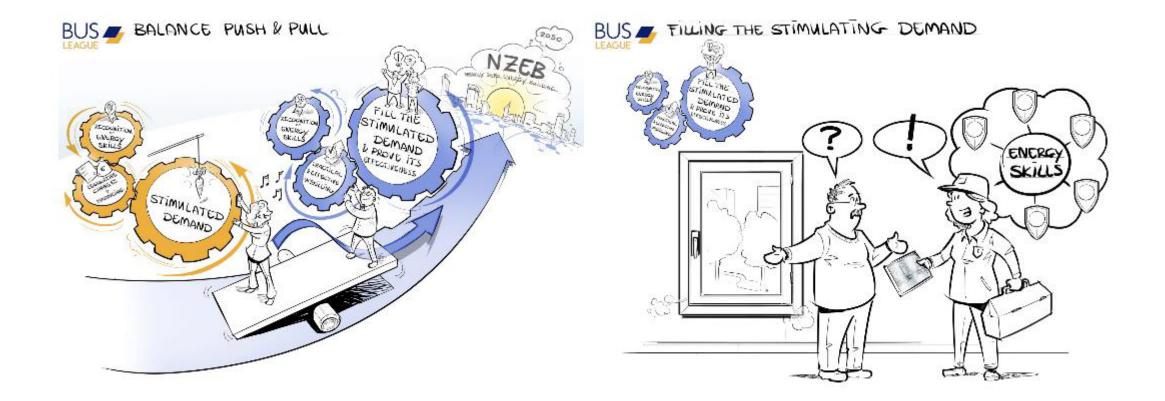

Source: <u>https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-</u> buildings/smart-readiness-indicator/sri-implementation-tools_en

SRI Assessment Tools

BUILD UP Skills / Construction skills projects

EnEffect

NZEB Ready


Target Category		Learning Program				
		Thermal bridges calculation				
		Mechanical ventilation system with heat				
	1. Designers (Architects and Engineers)	recovery				
		Building air tightness evaluation				
White Collars	2. Energy Auditors and Assessors	Solar shading systems				
		Bioclimatic design				
		Renewable energy sources				
	Evenution Engineers	Civil eng. Skills for nZEB Execution				
	Execution Engineers	MEP Skills for nZEB Execution				
Public Authorities		nZEB Concept in practice				
		Blower-door tester				
Key specialists for nZEB Certif	ication	Thermal bridges evaluator - infrared evaluator				
		General skills related to nZEB construction				
Blue Collars		General skills related to nZEB MEP				

BUS League

BUS League

0

BUSLeague Recognition of EE-skills

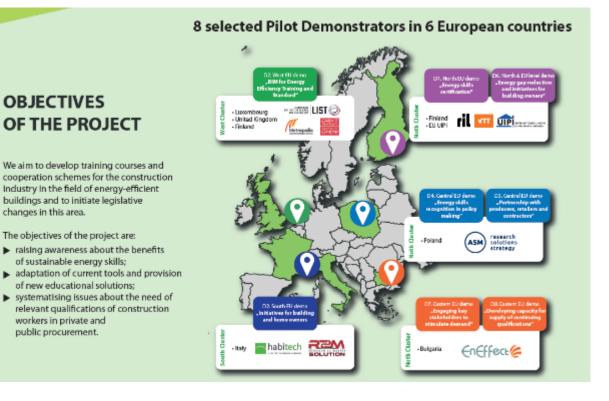
													\sim
Phase in process	New/Renovation	Tasks	Sub-tasks	NOTES	A S I C	С	s i g n	r	r u c t	o v e r	r a t e	a n c e	Numbers
Strategic definition	N/R	Explain the	e impact of EU climate change and energy policy on sustaining the but	ilt environment									
			Identify actions in national action plans for energy efficiency and	ULOs added to database		Х			Τ			Х	1
			Outline the EPBD and EED drivers relevant to building regulations	ULOs added to database		Х	Х				Х	Х	2
			Explain why it is important to reduce the energy demand and	ULOs added to database	Х	Х	Х	Х	Х	Х	Х	Х	3
			Explain the importance for energy efficiency combined with the need	ULOs added to database	Х	Х	Х	Х	Х	Х	Х	Х	4
			Illustrate implications of upgrading the energy performance of	ULOs added to database	Х	Х	Х	Х	Х	Х	Х	Х	5,9
			Interpret building standards and regulations in relation to energy efficiency and quality	ULOs added to database		Х	Х						6
Strategic definition	R	Explain the	e characteristics of energy use in existing buildings	•									
			Explain key information presented on an energy label	ULOs added to database	Х	Х	Х			Х	Х	Х	7
			Explain the energy profile of buildings	ULOs added to database		Х	Х				Х		8
			Explain the importance of energy performance of the building during	ULOs added to database	Х	Х	Х			Х	Х	Х	76
			Evaluate the energy performance of the building during the operational	ULOs added to database		Х	Х				Х		77

BUS GoCircular

EUEllecr

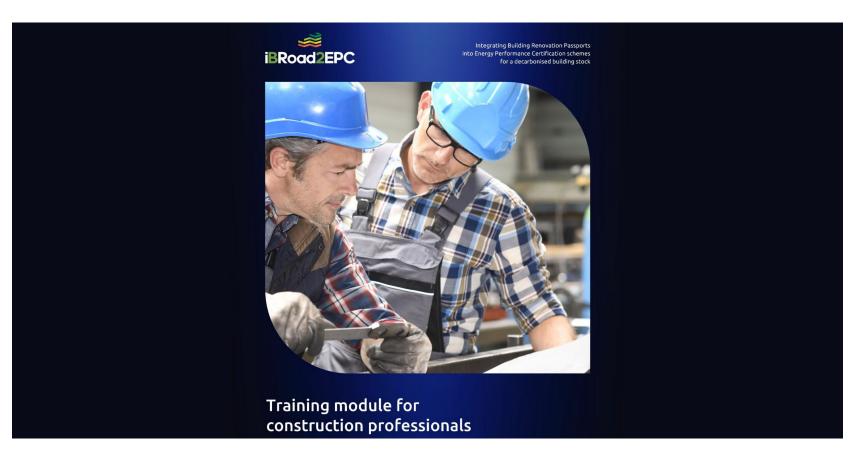
BUS GoCircular

	Competence	Skills	Knowledge	Notes & additional information
	Design with bio-based materials as an alternative for conventional construction materials	Select bio-based materials for the construction project at hand Consider the purpose of the building and the context of the entire building solution, as well as construction requirements When biobased materials are not an option, select low impact materials Integrate use of the Material Circularity Indicator (make sure it is not higher than X) Ensure use of materials that have little to no volatile organic compound (VOC) emissions	Types of bio-based materials in construction such as hemp, seaweed, cork, bamboo, sustainably sourced wood, agricultural residues Advantages and disadvantages of biobased materials Seven functional requirements of building walls Alternative forms of concrete	https://ellenmacarthurfoundation.org/material-circularity- indicator
	Enact measures that optimise material use to strive for material efficacy	Apply measures that optimise material use to construction projects Combat underutilisation or surplus of materials by sharing products or assets and optimising their use	General knowledge about measures that optimise material use in construction, such as 3D printing or accurate structural design/ industrialised prefabricated products	
	Design with non-critical raw materials as defined by the EU	Avoid, insofar as possible, use of critical raw materials as defined by the EU while selecting materials for a project	Types of non-critical raw materials as defined by the EU	<u>https://ec.europa.eu/growth/sectors/raw-materials/areas-</u> <u>specific-interest/critical-raw-materials_nl</u>
4	Design with non-toxic materials as defined by the EU	Avoid, insofar as possible, use of chemicals as defined by EU while selecting materials for a project	Types of non-toxic construction materials, such as alternatives to anti-flame retardants used on wood	https://echa.europa.eu/-/chemicals-in-our-life-chemicals- of-concern-svhc
	Design with products and materials that can be easily reused or recycled after use	Recognise and select materials that can be easily reused or recycled after the building's end-of-lifetime Recognise and avoid composites or other mixed materials that are then hard to recycle/repurpose	Reusable and/or recyclable materials, such as glass, plasterboard, steel, gravel (aggregates), rammed earth walls Recycling requirements for specific products and materials for safety and functionality (and regional/local infrastructure capacity)	
6	Replace freshwater use with alternative water sources	Use alternative water source applications that are suitable for the project at hand Harvest greywater and rainwater for certain applications Design sustainable drainage systems	Alternative water sources such as rainwater, fogwater, seawater, grey water etc. Which building applications are suitable for applying alternative water sources Sustainable drainage systems	



EUEllecr

INSTRUCT



IBROAD2EPC: Available materials

<u>https://ibroad2epc.eu/portfolio-items/ibroad2epc-training-material-for-construction-professionals/</u>

Thank you for your attention!

https://www.linkedin.com/company/eneffect-center-for-energy-efficiency

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither CINEA nor the European Commission are responsible for any use that may be made of the information contained therein.

