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Abstract: Smart building technologies and building automation and control systems (BACS) can
offer a range of additional benefits beyond energy savings, in particular by improving building
responsiveness to user needs. Although in recent years these technologies have gained popularity as
a means of reducing energy consumption and improving building performance, a clear picture of
the role of BACS in providing a wider range of benefits is still missing. This review identifies and
collects BACS impacts in office buildings with a special emphasis on improving indoor environmental
quality by adapting building operation to changing conditions and guaranteeing feedback and real-
time interaction with occupants. The resulting benefits, such as increased employee productivity,
fewer occurrences of sick leave, and lower rates of absenteeism are highlighted. Offices represent
an interesting field of application, as small improvements in the built environment can have a
significant impact on labour costs which are the predominant share of the total operating costs.
Furthermore, quantitative relationships between physical factors of the indoor environment and
benefits have been displayed where available. This literature review aims at establishing an approach
that comprehensively evaluates BACS across their entire spectrum, leading to the promotion of novel
business cases.

Keywords: BACS; non-energy benefits; office; comfort; health and well-being; productivity;
absenteeism

1. Introduction

The term “smart building” refers to a building that is capable of sensing, interpreting,
communicating, and actively responding to changing conditions related to building systems
or the external environment (e.g., energy grids). At a global level, the smart buildings
market is expected to grow at a Compound Annual Growth Rate (CAGR) of 10.9% by
2026, reaching USD 121.6 billion [1]. The use of smart building technologies and building
automation and control systems (BACS) is becoming more popular as a means of reducing
energy waste. However, a significant portion of energy efficiency measures have been
found to not be cost-effective enough if only energy savings are considered [2], thus
investors have started to look into the additional benefits of these measures. It can be stated
that non-energy benefits, often referred to as multiple benefits or co-benefits, are those
outcomes created apart from or in addition to energy savings associated with an energy
efficiency improvement and include, e.g., positive impacts on occupant comfort, health,
and well-being, as well as energy flexibility. With the Energy Performance of Buildings
Directive 2010/31/EU (EPBD Recast) [3] establishing the principles of cost-optimal and
nearly zero-energy performance levels, policymakers started to emphasise the co-benefits
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of energy efficiency measures [4]. A progressive shift towards nearly zero-energy buildings
(nZEB), as enforced by this legislation, requires significant adjustments to the existing
structures of the building market, which means including added values beyond energy
savings [5]. Smart building technologies and BACS assessment should undergo the same
approach, as these can provide additional benefits, besides the positive energetic impacts,
for many actors and stakeholders within the construction sector, i.e., building occupants,
facility managers, owners, tenants, and smart service providers. BACS can help design
healthier and more comfortable buildings and will play a role in facilitating the integration
of renewable energy sources (RES) into future energy systems that will have a significant
share of renewables and distributed energy supply, thus requiring a higher degree of
demand-side flexibility (DSF). At the European level, one of the objectives of the 2018
EPBD amendment (directive 2018/844 of the European Parliament and of the Council of
30 May 2018 [6]) is to make the aforementioned benefits more tangible. Therefore, with
the delegated regulation [7] and an implementing regulation [8], the Smart Readiness
Indicator (SRI), a voluntary EU scheme for rating building smartness, was introduced.
In particular, seven impact categories were defined in the SRI scheme to evaluate how
a smart ready service can influence the building, its users, and the energy grid: energy
efficiency, comfort, health, well-being and accessibility, maintenance and fault prediction,
convenience, information to occupants, and energy flexibility and storage.

Although a 2016 review of BACS concepts and technologies noted that there were
few references to the topic [9], in the following years, scientific literature showed a rising
interest. Aste et al. [10] proposed a framework for the analysis of BACS potential for
building performance optimization to tackle the gap between the designed and measured
performance of nZEBs. Al Dakheel et al. [11] discussed smart buildings’ features, functions,
and technologies. Furthermore, the article reviewed existing key performance indicators
associated with these technologies. O’Grady et al. [12] identified research trends and
patterns about the current state of building automation. The article covers building automa-
tion architecture, benefits, and interactions with occupants. The present paper elaborates
on the subject of BACS benefits, as a lack of literature that explores the wide range of
BACS impacts on the built environment and the corresponding non-energy benefits has
been identified.

As people spend the majority of their time indoors [13], poor indoor environmental
quality (IEQ) can cause a series of negative effects. Therefore, among non-energy benefits,
those related to a user-centric perspective such as comfort, health, and well-being, have
been given particular emphasis in accordance with current research trends. According to
O’Grady et al. [12], these are the second most researched topics in the BACS sector, with
34% of publications addressing perceived comfort and indoor air quality’s (IAQ) effects
on occupant health. Together with academic papers related to healthy buildings, there is a
rising number of dedicated certification systems such as WELL, Fitwel, Healthy Building
Certificate, and Living Building Challenge [14,15].

Finally, for the analysis, this study selected the office sector, which accounts for a large
share of floor space. In Europe (EU27 + UK), about 24% of service buildings are offices [16].
The benefits of having a positive impact on office users are particularly interesting, as the
cost of labour for office buildings is significantly higher than the cost of energy; it typically
accounts for around 90% of business operating costs [17]. Therefore, employees’ wellbeing
and productivity as a result of comfortable and healthy conditions in the workplace is a
key aspect. Conversely, there has been evidence that negative conditions can equally affect
concentration and productivity [18]. Additionally, both short-term and long-term health
problems can be accounted for as well. Short-term reversible effects such as headache,
eyes and nose irritation, respiratory difficulties, and lethargy fall under the name of Sick
Building Syndrome (SBS) [19].

The research question guiding the literature review was, "What are the main non-
energy impacts and benefits associated with BACS in office buildings, in particular when
responding to user needs?". The literature review has been conducted first by defining a
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specific nomenclature and indicating the criteria for publication selection in the materials
and methods section. Then, BACS impacts on the built environment have been covered
with a specific focus on the response to user needs. Finally, the benefits arising from these
positive impacts have been analysed, highlighting mathematical relationships between
physical factors and the specific benefits where available.

The main conclusions highlight how BACS can play a role in the creation of a comfort-
able and safe work environment. As a result, benefits in terms of improved productivity,
reduced sick leave, and reduced SBS symptoms are placed under the spotlight and linked
to building automation impacts on the built environment.

2. Materials and Methods
2.1. Nomenclature

As this review paper explores non-energy benefits of BACS, nomenclature issues have
been addressed first. Starting with the term “BACS”, there are several comparable terms
that can be utilized to reference building automation, including Building Management
System (BMS), Building Control System (BCS), Building Automation System (BAS), and
Building Energy Management System (BEMS). BMS and BCS are generally used as overar-
ching terms for systems that manage buildings, although they do not specifically denote
automation systems. BEMS is focused on energy management. In this review, the term
BACS has been chosen to identify systems that monitor and control building services, as
defined by EN ISO 16484-2:2004 [20].

Secondly, the nomenclature related to “non-energy benefits” has been addressed.
A 2012 report from the International Energy Agency (IEA) discussed the economic and
social benefits of energy efficiency measures, as these have proven to have numerous
benefits for the economy, society, and end-users well beyond the immediate results in terms
of energy and cost savings. The term "multiple benefits" was employed to describe the
wider socioeconomic outcomes that can result from energy efficiency improvement [21,22].
A similar concept was presented in the 2011 report “Assessing the Multiple Benefits of
Clean Energy” from the US Environmental Protection Agency [23]. Later, the International
Energy Agency Energy in Buildings and Communities Programme (IEA EBC) Annex 56 [24]
worked on a new methodology for the cost-effective renovation of existing buildings and
included a comprehensive definition of so-called “co-benefits”. Co-benefits were defined
as “the effects (either positive or negative) beyond the energy savings and the reduction
of carbon emissions that may arise from high efficiency energy buildings and from an
energy-related building renovation” [25].

In the present study, a database search was conducted, combining different key-
words to understand which is the prevalent nomenclature. In combination with the word
“building”, the following keywords have been searched: “co-benefits”, “multiple benefits”,
“multiple impacts”, and “added values”. Although the first two keywords are slightly
predominant, no universally accepted nomenclature for non-energy benefits has emerged.
For instance, a study dealing with energy efficiency investments analysed the correspond-
ing “co-benefits”, also defined as ancillary benefits [26]. Another study adopts a broader
view, identifying co-benefits as a result of built environment strategies that promote climate
change mitigation [27]. In addition, no clear distinction between “benefit” and “impact”
could be found. As a general rule, the words “co-benefits” and “multiple benefits” refer
to additional benefits with regard to an overarching perspective such as green building
design or energy efficiency measures, which are seen as the “main benefit”. Whereas the
terms “multiple impacts” and, more in general, “impact” refer to the effects on specific
areas of the built environment, such as comfort, energy flexibility, well-being, etc.

Therefore, after reviewing the state of the art, a specific nomenclature has been defined.
On the one hand, the definition of “impact categories” was selected to identify those
aspects of the built environment impacted by a certain technology, as proposed by the SRI
assessment framework as well. The SRI assessment divides the impacts into three main
areas: (1) Energy saving and operation; (2) Response to user needs; (3) Response to the
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needs of the grid. Al Dakheel et al. [11], in conducting a review of smart buildings features
and key performance indicators, propose a similar breakdown, with a fourth area called
“monitoring, control, and supervision” [11]. The pathway adopted by the SRI assessment
has been chosen in this study, considering the fourth area integrated into the previous three.

On the other hand, the word “benefit” was selected to identify a positive outcome
of impacting a specific category or area. For example, a well-designed and well-operated
ventilation system positively impacts IEQ, in particular the IAQ levels, of a building. Stake-
holders benefit differently from improved IAQ., i.e., for an office employee, reduction of
SBS, stress, or better concentration are major benefits. These nomenclature choices are
aimed at better clarifying and distinguishing terms that often are mixed or used inter-
changeably. Figure 1 summarizes the proposed approach, reporting impact categories, a
further division in subcategories, and some examples of related benefits.
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Figure 1. Nomenclature—impacts and benefits.

Energy efficient operation refers to the use of technologies that maximise energy
savings. Reducing energy waste lowers costs and carbon dioxide (CO2) emissions. The
capacity to respond to external conditions relates to the ability to interact with the electricity
grid in a flexible and dynamic manner. This allows a building to adjust energy use based on
grid conditions, demand, and production. Response to user needs refers to the ability of a
smart building to adjust its functions and systems to meet the specific needs and preferences
of the person living or working there. Needs include factors such as having a high-quality
indoor environment, being informed on building performance and management, and
ensuring a safe and efficient operation and maintenance.

2.2. Literature Search

The publications were searched through various databases, e.g., Scopus, Web of
Science, Google Scholar, Institute of Electrical and Electronics Engineers (IEEE), Xplore,
and ResearchGate. The literature search carried out to identify the impacts and benefits
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of BACS in office buildings has been structured around two major blocks. On the one
hand, technologies and systems have been reviewed based on the impacts areas. To this
aim, the keywords “BACS” and “building automation” have been searched in combination
with the impacts: energy efficiency, flexibility, the single subcategories of IEQ (thermal
comfort, visual comfort, acoustic comfort, IAQ), and information to users. On the other
hand, benefits resulting from improved impact categories have been searched. Keywords
such as “thermal comfort” or “IAQ” or “visual comfort” have been searched in combination
with the keywords “productivity”, “SBS”, “sick leaves”, and “absenteeism”.

The results have been filtered, discarding those not related to office buildings and
focusing on the most recent ones. After the screening, 112 publications have been reviewed
in depth (Figure 2). A significant 70% have been released within the last 10 years, while
a notable 40% stem from the most recent 5 years. However, there is a set of studies,
mainly from the US, published between 2000 and 2006 that examined the intersection of
productivity, SBS, and work performance in office buildings. The majority of significant
contributions to this topic emerged within these years, and these remain the most valuable
references, as no major subsequent studies have supplanted their significance.
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Figure 2. Yearly distribution of the reviewed literature.

3. BACS Impacts
3.1. Energy Efficient Operation

Energy efficient building operation has always been the main objective of several
building technologies. This consideration is true for BACS as well; O’Grady et al. [12]
reviewed studies on building automation systems and showed that the energy efficiency
impact category is the most prominent; out of 79 scientific publications analysed, 73 target
energy efficiency aspects. Non-residential buildings are responsible for 8% of global final
energy consumption [28], and in the office sector, Heating, Ventilation, and Air Condition-
ing (HVAC) represents 33% of all energy use in the US [29]. Therefore, research efforts
often focus on improving automation and control of HVAC generation, distribution, and
emission systems. For instance, forecasting algorithms combined with an optimizer [30], or
the integration of real-time weather responsiveness [31], are proposed to enhance BEMS
functionalities. Two BACS retrofit options were evaluated in a Danish office case study,
reporting energy savings up to 29% [32]. Model Predictive Control (MPC) for HVAC and
lighting equipment instead of the conventional Rule-Based Control (RBC) has been studied
in a Swiss office, showing 17% energy savings for MPC [33]. Thermostat control based
on air temperature and operative temperature has been explored for fan-coil and radiant
systems [34], showing energy savings in case of operative temperature control (up to 8.3%).
Different control strategies for smart glazing have been analysed with and without daylight
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sensors. RBC using thermal load controls allows up to 9% energy savings, and optimised
hourly settings save up to 20% of the yearly energy consumption [35]. Since workplaces
consume more than 45% of their total electrical energy to provide adequate lighting [36], re-
search on BACS tackled this topic intending to optimise energy use without compromising
visual comfort. A fuzzy logic control system reduces energy waste by 30% without reducing
occupant comfort [37]. A review focused on lighting control in open office spaces points
out how control strategies that are occupant-dependent can reduce energy consumption by
up to 60% [36]. Energy savings in the range of 45 to 61% are found for a control strategy
based on daylight [38]. A meta-analysis study analysing multiple lighting control strategies
found a potential for a 24% energy saving for occupancy-based approaches, a 28% energy
saving for daylighting, a 31% energy saving for individual tuning, a 36% energy saving for
institutional tuning, and a 38% energy saving for multiple approaches [39].

3.2. Response to the External Condition

The growth of renewable energy generation challenges the power grid balance due to
its intermittent nature. Providing flexibility with higher power plant capacity or with en-
ergy storage are capital-intensive solutions; therefore, alternative power flexibility resources
such as DSF need to be considered. Buildings are potential actors in DSF, as their energy
flexibility can be determined by parameters such as thermal mass, HVAC and lighting
systems characteristics, and occupant behaviours [40]. The BACS commonly available
in office buildings and their large thermal inertia enable them to participate successfully
in grid response activities [41,42] by shaving peak loads and maximising economic ben-
efits. In a study reviewing the potential and building performance implications of DSF,
power flexibility characteristics (shed-ability, controllability, and response time) for key
office building loads are reported with corresponding literature [43]. Requirements for
coordinating the interaction between building flexibility and the grid are reviewed and,
for a reference case, the useful energy is also quantified [44]. Multi-agent systems are
proposed instead of traditional BMS to coordinate the interaction with smart grids [45]. A
control framework based on MPC is tested in office buildings, providing 19.5% and 10.6%
of additional photovoltaic self-consumption and building self-sufficiency, respectively,
compared to two baseline controls with constant setpoints [46]. Overall, improvements in
the area of energy flexibility need to be achieved without compromising other building
performances. Therefore, in addition to parameters such as energy capacity, response time,
or load shift potential, occupants’ dissatisfaction with indoor comfort and poor indoor air
quality should also be considered when evaluating flexibility [41].

3.3. Response to User Needs

Response to user needs means providing high IEQ by adapting operations to chang-
ing conditions and ensuring feedback and real-time interaction with occupants. The
TAIL scheme for rating IEQ in offices and hotels undergoing deep energy renovation
(EU ALDREN project) [47], divides IEQ into thermal environment, acoustic environment,
IAQ, and luminous environment (TAIL). By improving these categories, it is possible to
enhance physical (comfort sensation) and psychological (occupant satisfaction) well-being.
According to U.S. data, people spend a large amount of their time in buildings (90% of the
time according to data [48,49]), so it is not surprising that comfort, health, and well-being
are increasingly investigated topics, not only as a side-effect of energy efficiency mea-
sures [50]. Results from a 2022 study that investigated building professionals’ experience
and interest in occupant health in buildings [51] show that the number of studies published
in the last six years on healthy buildings has been increasing. The COVID-19 pandemic has
also significantly influenced professionals’ perspectives on the impact that buildings have
on occupants’ health. Despite the growing attention, an analysis of temperature satisfaction
of 52,980 office occupants in North America revealed that only about 38% are satisfied [52].
In another survey, a percentage of satisfaction of 80% or more was found in only 11% of
buildings for thermal comfort and in 26% of buildings when IAQ was investigated [53].
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Furthermore, evidence shows that green-certified buildings do not necessarily perform
better [54,55].

BACS can respond to user needs in office buildings by optimising temperature control,
the rate of air exchange, and the use of daylight by providing personalized settings and
room scheduling. In this section, BACS’ impacts on the different categories related to
response to user needs are analysed. In the following section, the main benefits associated
with these impacts, such as productivity and health benefits, are investigated.

3.3.1. Thermal Comfort

According to the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) Standard 55, the concept of thermal comfort refers to the mental
feeling of being comfortable in a particular temperature range [56]. It is a highly subjective
state dependent on numerous physical, physiological, and psychological factors, such as
age, gender, metabolism, clothing, physical activity, location, posture, and mental state [56].
Research suggests that large variations in daily temperature beyond an acceptable range
affect long-term thermal comfort more than the average experience over time. Continuous
monitoring technologies can be used for evaluating long-term thermal comfort based on
this evidence [57]. However, energy savings take precedence over thermal comfort in
the building control literature [58]. Often, innovative control strategies are proposed and
analysed to improve energy efficiency while maintaining comfort levels. Various MPC
algorithms are applied to a BMS in an office for the purpose of optimising both indoor
comfort and energy consumption [59,60]. According to the first study, the MPC achieved
a higher level of comfort satisfaction during working time compared to a programmable
thermostat (97.4% vs. 77.2%) and a 19.4% reduction in energy consumption. In another case,
a neural network temperature predictor is combined with a fuzzy controller to maintain
indoor thermal comfort in an office building by controlling the ventilation rate [61]. Hybrid
MPC performed better than RBC in terms of energy consumption and percentage of
discomfort hours for dynamic façades with electrochromic glazing [62]. Automatic window
controls based on temperature and CO2 sensors reduce the risk of overheating in office
buildings by 64% and improve IAQ in highly occupied environments by 90% compared
to manual control [63]. These works evaluate thermal comfort using the Predicted Mean
Vote (PMV) method. Nevertheless, smart building technologies are showing how it is
possible to improve thermal comfort, linking it to controllable building parameters. BMSs
act on adjustable parameters such as air conditioning setpoint or ventilation air flows,
whereas PMV factors cannot be directly controlled since these factors result from the
interaction between HVAC settings and building internal and external conditions. Machine
learning (ML) techniques and neural networks (NNs) are applied to bridge the gap between
controllable building parameters and thermal comfort modelling [64]. As a result of the
availability of Internet of Things (IoT) environmental sensors, a hybrid approach based on
machine learning and building dynamic simulation was developed for the prediction of
indoor thermal comfort feedback in an office building in France [65]. Lastly, IoT and ML
are leveraged to learn individual comfort requirements directly from data collected in the
indoor environment [66].

3.3.2. Visual Comfort

The European standard EN 12665:2018 defines visual comfort as “a subjective con-
dition of visual well-being induced by the visual environment” [67]. Visual comfort is
usually assessed using factors linking the light environment and occupant needs, such as
the quantity, quality, and uniformity of light, and the presence of glare. Studies review-
ing parameters used to assess the quality of the indoor environment of offices identify
illuminance levels and daylight factor as the most used indicators to define luminous
comfort [68,69]. These indicators are common across certification schemes and standards
as well [70]. Lights, switches, dimmers, and different types of movable blinds and shad-
ing systems are meant to provide flexibility towards the changing needs of illumination.
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However, office occupants often actively close blinds or switch lights on when discomfort
arises, but tend to forget to turn off the lights or open the blinds when negative conditions
end [71].

Hence, the role of BACS in visual comfort is investigated with the objective of optimis-
ing daylight and artificial illumination, while reducing energy consumption at the same
time [72–74]. For instance, the lack of physical connections with the outside environment
is a major source of dissatisfaction in offices [75,76], but excess daylight and proximity to
windows can cause glare. A study on glare-based control strategies for automated blinds
in office buildings points out that glare prevention should be the main priority of these
systems since glare is the main reason occupants interact with shading devices. The study
proposes MPC based on daylight simulations to prevent glare without excessive use of
sensors. The lack of real-time daylight simulation tools and computational requirements are
major challenges [77]. A simulation and field study evaluated visual comfort and energy
savings by implementing 10 different control strategies for lighting and shading [78]. The
study concluded that, if glare protection is not necessary, a blind slat angle of 0◦ or dynamic
shading is preferable in winter. However, in summer, a blind slat angle of 30◦ or dynamic
shading is the optimal configuration. An adaptive lighting and blind control algorithm was
developed and tested, resulting in −25% electric lighting use without affecting comfort.
Based on occupants’ light switching and blind closing behaviour, the algorithm learns their
preferred illumination level. This information is used to calculate photosensor setpoints
for lighting and blinds [71]. Finally, occupants’ satisfaction with blinds and ceiling lights
has been tested in relation to two different control strategies: fully automatic and manual.
Results showed that higher visual and thermal discomfort was reported by participants
testing fully automatic control, although the measured average operative temperature was
similar in both cases [79]. These results are relevant in relation to the BACS impact area
“information to occupant” and the relationship between control perception and comfort.

3.3.3. Indoor Air Quality

Indoor air quality refers to the quality of an indoor environment’s air as determined by
chemical, biological, and physical contaminants. Although it has often been overlooked in
favour of other topics such as energy efficiency, sustainability, and outside air quality [80],
its importance has gained momentum in the last decade, as evidence supporting its effect
on health, quality of life, and the working environment has been discovered [81]. The TAIL
scheme for rating IEQ selected the most relevant indicators to describe IAQ from the EN
16798-1 standard [82], the guidelines published by the World Health Organization [83]
and Level(s) framework [84]: carbon dioxide, ventilation rate, air relative humidity, visible
mould, benzene, formaldehyde, PM2.5, and radon [47].

On the one hand, increasing ventilation rates guarantees better IAQ, but this happens
at the expense of energy consumption. On the other hand, lowering the energy consumption
associated with ventilation systems can increase the risk of deteriorating IAQ. BACS and
sensing technologies have the potential to tackle both aspects at the same time [85] by
providing demand controlled ventilation (DCV) [86]. Measurements collected from case
studies showed that DCV is of particular interest in rooms which have a wide range
of occupancy rates such as open offices [87]. A study integrated the CO2 mass balance
equation with CO2 sensors to reduce energy consumption, maintaining indoor pollutants
within recommended ranges [88]. Furthermore, with advancements in IoT and ML, an
office desk can be customised to meet an individual’s needs, going beyond existing BMS,
which provides centralised control or control at the zone level, not considering individual
preferences [89].

3.3.4. Information to the Users

Real-time and historical information regarding indoor environmental conditions,
warnings, performance evaluation, forecasting, and benchmarking are functionalities that
can be implemented with BACS and thus delivered to building users. The achievement of
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the performances foreseen at the design stage is a recognized issue. Brager et al. [90] report
how extensive field research has identified widespread low occupant satisfaction with
indoor thermal environments. The main identified causes are building over-conditioning
and lack of individual control over the environment by occupants. Higher user awareness
and higher perceived control over the building operation have been proven to have ef-
fects on thermal sensation and comfort. This leads to higher satisfaction with the indoor
environment [91–94]. On the contrary, a fully automated control system that removes
occupant control over the environment leads to lower satisfaction levels [95,96]. A similar
negative outcome can result from conditions such as inaccessibility and poor location of
environmental controls [97]. A post-occupancy evaluation carried out on a green building,
which had more control options compared to a conventional design, showed that the
lack of responsiveness and relevant feedback and limited user understanding may have
contributed to poor comfort conditions. Findings from the study indicate that users wish to
learn more about how buildings work and how comfort can be provided [98]. A field study
on the effect of BACS on perceived comfort found that participants in the test reported
improved perceived comfort when adaptive opportunities (e.g., movable blinds, operable
windows, thermostats) were available. Furthermore, even though occupants preferred
less automation, digital control technologies such as mobile apps were acceptable [96]. A
study proposes a prototype user-interactive system integrated with a model predictive
HVAC controller in office buildings to counteract energy consumption associated with
occupants’ control overrides. Results show that MPC can underestimate HVAC energy
consumption by up to 55% if manual interventions are not taken into account. The pro-
posed user-interactive system allowed for the recovery of 36% of the additional energy
consumption while maintaining occupant satisfaction [99].

A study [100] analysing a LEED-certified office building in North America pointed out
that, as most green building rating systems (such as LEED, Green Globes, and BREEAM)
focus on predicted performance at the design stage, actual performances are rarely verified.
Thus, sustainable design depends on measuring and monitoring the in-use performance
of “green” buildings [101]. Another study compared IAQ and SBS in green and standard
buildings, concluding that poorly maintained green buildings do not have any added
advantage [102]. In this context, BACS can play a role in reducing the performance gap
between the design and operation phases of a building. Knowledge and automation sys-
tems can enable climate-responsive architectural design, making efficient use of mechanical
systems [90] and improving building resilience in addressing unexpected scenarios such as
power outages, new habits of users, heat islands, and new constructions [103].

From the perspective of a building owner or a facility manager, BACS provide control
tools to building management staff to detect and resolve system issues. This prevents unex-
pected equipment breakdowns and business disruptions and ensures building equipment
operates correctly. As a result, BACS have the potential to lower maintenance costs and
extend equipment life by reducing demand and start/stop cycles [104,105]. Further, BACS
data can be used to establish benchmarks and to support the valuation of assets in real
estate transactions.

4. Benefits
4.1. Productivity

Improving thermal and visual comfort, enhancing IAQ, or delivering feedback and
control are ways of providing an adequate response to user needs. The role of BACS in
this context has been highlighted in the previous sections. These impacts can give rise to a
variety of benefits, depending on the stakeholder perspective. For office buildings, salaries
are considerably higher than energy and maintenance costs [106]. Therefore, any action
that results in improving employee productivity has strong effects on an organisation’s
financial performance [107]. For the same reason, measures to reduce sick leave can have an
effective return on investment [76]. For instance, a 2000 study tried to estimate the impact
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on U.S. GDP deriving from direct productivity improvements, reduced respiratory disease,
reduced allergies and asthma, and reduced sick building syndrome symptoms [108].

Research indicates that job performance and satisfaction are both affected by the
physical environment in the workplace [95,109]. Thermal comfort has a strong influence on
occupant productivity. A total of 82.7% of interviewed office occupants in Chile confirmed
that their productivity is affected by the thermal environment [110]. In the same way, in
Japan, a positive correlation was found between thermally satisfied office workers and
their self-estimated performance [111]. Several studies have shown that productivity and
IEQ are causally related [107]. A 3% increase in execution speed with a reduction of air
temperature from 25.5 ◦C to 23.5 ◦C was observed in a study describing a methodology to
evaluate IEQ and its effects on comfort and performance [112]. A review of temperature
control for health and productivity in offices reports an average 2% productivity loss per
degree ◦C above 25 ◦C of indoor temperature [113]. Another study by the same author
proposed a relationship between air temperature and relative performance [114], later
confirmed by Lan et al. (2011) as well [115]. Based on Equation (1) elaborated by [114],
Figure 3 shows the relationship between productivity relative to maximum value (P) and
indoor temperature. This study places the optimum not on the neutral thermal sensation
but slightly on the cold side (PMV between −0.5 and 0).

P = 0.1647524 × T − 0.0058274·T2 + 0.0000623 × T3 − 0.4685328 (1)

Productivity increases in a comfortable visual environment as well. BACS can optimise
daylight, provide correct artificial illumination, and prevent glare. Findings indicate that
occupants prefer illumination levels between 300 and 450 lux for the indoor working
environment and show a preference for daylight. Kaushik et al. (2021) point out that
illumination has a “positive” effect on visual comfort and productivity from 225 lux and a
“very positive” impact from 325 to 450 lux [116]. Researchers found that using a shading
system improved an individual’s performance on tasks requiring sustained attention,
for instance, colour-naming tasks. In other tasks requiring velocity and vigilance, no
effects were found [117]. Furthermore, visual comfort and high daylight levels have
been associated with tenants willing to pay 5–6% more for renting an office with these
characteristics under the market conditions of Manhattan, U.S. [118]. Epidemiological
studies have investigated the relationship between daylight and absenteeism. A study
from Norway found that adding 1 h of daylight increases the sickness recovery rate by
0.8% [119].

The relationship between occupant productivity and IAQ includes several contri-
butions. Numerous studies have demonstrated that an increase in outdoor ventilation
rates can improve productivity at the workplace. Not only are CO2 levels associated with
attention levels but also odour perception leads to experiencing secondary effects, such
as sensory irritation, distraction, and deteriorating performance [120]. An experimental
study looked at work performance when subjects were exposed to high levels of VOC and
different ventilation rates. Work performance was observed to increase by 2.5–5% as the
ventilation rate increased from 5 to 20 l/s per person [121]. Two studies examined work
performance in a call centre. The first study could not find a strong relationship between
ventilation rate and performance [122], whereas the second one found a 6% decrease in
talk-time in a call centre with an enhanced flow rate and a newly installed supply air filter
in place [123]. In an office experimental setup, five groups of six employees have been
observed at three ventilation rates: 3, 10 and 30 l/s per person. As the ventilation rate dou-
bled, productivity increased by about 1.7% [124]. A review conducted in 2005 statistically
analysed data from laboratory experiments and field measurements of multiple studies,
finding an average performance improvement of 1–3% per 10 l/s-person increase in venti-
lation rate. Over 45 l/s-person, no further performance increase was observed [125,126].
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As a result of [126] statistical analysis, [127] developed Equation (2), which can be used to
calculate the relative performance:

RP = exp
[(

−161.822·x−1 − 0.368Ln(0.472x) + 1.827x − y0

)
/1000

]
(2)

Equation (2) is displayed in in Figure 3, in addition to the relationship between relative
performance and indoor temperature. For instance, the curve corresponding to an initial
ventilation rate of 14 l/s per person is displayed; y0 is the coefficient (20.1553) associated
with the initial ventilation rate as reported in [127].
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Evidence of benefits in terms of productivity resulting from the BACS impact category
“information to occupants” has been recorded as well. Human productivity is maximised in
offices with many possibilities for personal control and a feedback system with complaint
monitoring [128]. Finally, a complete overview of the relationship between IEQ parameters
and office productivity has been collected by a comprehensive review that looked at
300 journal and conference articles and books [129].

4.2. Health and Well-Being

Moving on to health-related issues, such as SBS symptoms, allergies, and respiratory
irritation [130], an association with lower IAQ emerged from several studies. Reduced sick
absences can be accounted for as one of the main benefits of reducing these negative effects.
Connecting ventilation rates and health-related aspects is fundamental to quantifying this
benefit. It was observed that the prevalence of selected symptoms might decrease by up
to 70–85% with large increases in ventilation rate and/or improvements in ventilation
effectiveness [131]. An airborne transmission model and published field data have been
combined to statistically estimate a quantitative relationship between ventilation rate and
sick leaves [132]. Apart from being responsible for odours and deteriorating performance,
as mentioned above, VOCs can cause sensory irritation and even pulmonary effects [120].
The quantitative relationship between SBS symptoms and ventilation rates can be estimated
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with the following Equation (3) based on a statistical analysis of published data from
8 studies and 43 data points [133]:

RSP = exp[(−0.0541901 + 0.0008939·x)·x + 0.452511] (3)

where RSP is the SBS symptom prevalence, relative to a ventilation rate of 10 l/s per person.
In Figure 4, the relationship between sick leave prevalence and ventilation rate is displayed
as reported by [132] and based on the data of [134]. At the same time, the relationship
between SBS symptoms and ventilation rate has been displayed as well [133].
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Figure 4. Sick leave in offices and SBS symptom relative prevalence vs. ventilation rate.

Fisk et al. (2012) [135] put together different quantification methods to estimate annual
economic benefits associated with changing ventilation rates for office buildings in the
United States. The study found that the costs of lowering the ventilation rate from 8 to
6.5 l/s per person largely outweighed the energy savings. A recent work proposes a novel
complementary approach to estimate IAQ costs in offices associated with pollution and SBS.
Costs of Disability Adjusted Life Years (DALY) are calculated as a function of pollutants
concentration and the number of workers [136]. Finally, specific literature reviews have
been conducted on the impact of IEQ on health and productivity [137,138].

5. Discussion

BACS have been analysed considering the different impacts on the office built envi-
ronment and the associated benefits. These technologies have proven to be a cost-efficient
solution to achieve energy efficient building operation as they quickly pay for themselves
via reduced utility expenses. Recent research efforts have been focused on the optimization
of various strategies, such as implementing forecasting algorithms, real-time weather re-
sponsiveness, MPC, sensor networks, thermostat control based on operative temperature,
smart glazing control, and occupancy-based lighting control. These strategies have been
shown to achieve energy savings of up to 29% for heating and cooling and up to 60%
for lighting. Offices and buildings in general have the potential to respond to external
conditions and to be involved in DSF by using building automation and thermal inertia to
increase coordination with the grid, reduce peak loads, and maximise economic benefits.
MPC strategies have been tested in office buildings, providing additional photovoltaic
self-consumption and building self-sufficiency.

A systematic analysis of dissatisfaction in office buildings conducted using post-
occupancy evaluation from over 600 buildings showed that a total of 81% of respondents
expressed dissatisfaction with at least one aspect of their workspace, while 67% expressed
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dissatisfaction with more than one [139]. However, three decades of public health studies
have shown that better IEQ leads to healthier and more satisfied workers, making it crucial
for employers, building owners, and managers. IEQ effects on productivity and health-
related aspects are the most cited benefits. Table 1 collects the main studies addressing
these benefits.

Table 1. Quantification of benefits—literature overview.

Type of Study Impact Area Benefit Correlation Source

Review Thermal comfort Performance/productivity −2% of productivity for each +1 ◦C
above 25 ◦C [113]

Review Thermal comfort Performance/productivity
Performance increase with
temperature below 22 ◦C and
decreases above 25 ◦C

[114]

Experimental Thermal comfort Performance/productivity Optimum around 22 ◦C and PMV
between 0 and −0.5 [115]

Field intervention Thermal comfort Performance/productivity +3% in execution speed when T from
25.5 ◦C to 23.5 ◦C [112]

Review and
statistical analysis Thermal comfort Health +12% intensity of SBS-symptoms each

+1 ◦C above 22.5 ◦C [140]

Review IEQ Performance/productivity
+0.5–5% of productivity at building
stock level by improving
indoor environment

[108]

Simulation + market
analysis Visual comfort Higher rent +5–6% rent for offices with high

daylight values [118]

Empirical analysis Visual comfort Reduced sick leave +1 h of daylight = +0.8% of recovery
rate from sickness [119]

Experimental IAQ Performance/productivity +2.5–5% of work performance as
ventilation rate from 5 to 20 l/s-person [121]

Experimental IAQ Performance/productivity
+1.7% productivity for a 100%
ventilation rate increase between 3
and 30 l/s-person

[124]

Review IAQ Performance/productivity +1–3% productivity per 10 l/s-person.
Negligible over 45 l/s-person [125,126]

Empirical analysis IAQ Health
Symptoms prevalence decrease by up
to 70–85% with large increases in
ventilation rate

[131]

Review and statistical
analysis IAQ Health Risk of short-term sick leave = 35% for

low ventilation rates [134]

Review and
statistical analysis IAQ Health

+23% SBS symptoms for ventilation
from 10 to 5 l/s per person;
−29% from 10 to 25 l/s per person

[133]

BACS can address user needs by creating a healthier and more productive work
environment in office buildings by maintaining an optimal indoor temperature. The re-
lationship between thermal comfort and productivity in buildings has been extensively
reviewed [141,142]. However, studies outlining mathematical relationships between physi-
cal factors of the indoor environment and productivity are limited [142]. Literature agrees
in associating a 2% productivity decrease for each temperature degree above 25 ◦C, with an
optimum around 22 ◦C. Nevertheless, a high degree of uncertainty needs to be considered,
due to the different conditions and activities where productivity can be analysed [141]. To
date, the PMV method has been commonly used to evaluate thermal comfort, but BACS and
smart building technologies are allowing us to bridge the gap between comfort modelling
and controllable building parameters through the implementation of ML techniques and
NNs. The deployment of IoT environmental sensors has been used to learn individual com-
fort requirements and has been coupled with building dynamic simulation for predicting
indoor thermal comfort.
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In the field of visual comfort, according to a 2021 report by the American Society of
Interior Design, 68% of workers have complaints about building lighting. BACS can control
natural and artificial lighting levels, ensuring that the environment is not too bright or too
dim, which can help improve visual comfort and reduce eye strain. Control of shading
devices can preserve the connection with the outside environment while preventing glare
and overheating. Furthermore, adjusting artificial light is required to optimise dimming
and colour temperature control, guaranteeing the correct illuminance levels based on
the performed tasks. Optimal illumination has been shown to improve mood, energy,
alertness, and overall productivity, although mathematical relationships with visual comfort
parameters need to be further investigated. On the health side, it was proven that daylight
reduces absenteeism. Estimates found that adding one hour of daylight increases the daily
entry rate to absenteeism by 0.5% and the corresponding recovery rate by 0.8% [119].

In an effort to provide adequate ventilation rates and to reduce energy consumption at
the same time, demand controlled ventilation managed by BACS and sensing technologies
have an edge in optimising these two aspects. Ventilation rates are proportionally related to
productivity, ranging from around 3 to 30 l/s per person [124]. In this range, a productivity
increase of 1–3% is expected for each additional 10 l/s per person [125]. Finally, higher
user awareness and control lead to higher satisfaction levels, while fully automated control
systems result in lower satisfaction.

Some studies analysed productivity in simulated office environments. In this case,
one of the main limitations is that the tasks analysed were simple ones. As a result, it is
unclear whether the data are representative of actual office performance. Another research
path used questionnaires in real conditions, but in this case, the inaccuracy is related to the
limited control over the experimental conditions. In terms of health and well-being benefits,
the literature review reveals a clear link between sick leaves and ventilation rates [131,134],
with SBS symptom prevalence increasing for ventilation rates below 10 l/s per person [133].

Future research is needed to improve the understanding of the connection between
controllable environmental parameters and the achievable benefits of specific automation
systems and control strategies. Furthermore, the exploration of analysis and reliability of
quantification methods is recommended as well.

6. Conclusions

Building automation and control systems can have multiple impacts on the office built
environment in addition to energy related ones. BACS can improve overall comfort by con-
trolling temperature, daylight, artificial lighting, and ventilation. By acting on ventilation
rates, BACS can enhance IAQ, reducing pollutants and controlling the presence of VOCs.
Maintenance can be improved by monitoring and controlling equipment, making it easier
to identify and fix problems before they cause downtime. It can facilitate communication
and remote access to building systems, providing increased flexibility and reducing the
need for on-site maintenance. Safety and security can be enhanced by monitoring building
access, response to fire, and other safety alarms.

As a result, a variety of non-energy benefits need to be taken into account when evalu-
ating the role of BACS. In the case of office buildings, meeting user needs and providing
a comfortable and safe work environment can improve employee productivity; reducing
pollutants has a positive effect on sick leaves and the appearance of SBS symptoms. Thanks
to BACS, these positive outcomes can be achieved by optimising energy consumption,
which is often a competing interest.

Singular BACS impacts on the built environment and benefits derived from an im-
proved IEQ are two topics with already established coverage in scientific literature. How-
ever, studies that bridge the gap between these two aspects are still missing. This literature
review tried to link these two topics by introducing an approach that aimed at evaluat-
ing the multiple impacts and related benefits that BACS can offer. Establishing common
ground on this topic has the potential to be beneficial for investors, paving the way for the
promotion of novel business cases for BACS implementation.
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