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Abstract: The continuous monitoring of indoor environmental quality (IEQ) plays a crucial role
in improving our understanding of the prominent parameters affecting building users’ health and
perception of their environment. In field studies, indoor environment monitoring often does not
go beyond the assessment of air temperature, relative humidity, and CO2 concentration, lacking
consideration of other important parameters due to budget constraints and the complexity of multi-
dimensional signal analyses. In this paper, we introduce the Environmental Quality bOX (EQ-OX)
system, which was designed for the simultaneous monitoring of quantities of some of the main IEQs
with a low level of uncertainty and an affordable cost. Up to 15 parameters can be acquired at a
time. The system embeds only low-cost sensors (LCSs) within a compact case, enabling vast-scale
monitoring campaigns in residential and office buildings. The results of our laboratory and field
tests show that most of the selected LCSs can match the accuracy required for indoor campaigns. A
lightweight data processing algorithm has been used for the benchmark. Our intent is to estimate the
correlation achievable between the detected quantities and reference measurements when a linear
correction is applied. Such an approach allows for a preliminary assessment of which LCSs are the
most suitable for a cost-effective IEQ monitoring system.

Keywords: indoor environmental quality monitoring; IoT sensing; low-cost sensors; IEQ field
measurements; calibration methods

1. Introduction

Back in the 1990s, according to [1], people in the U.S. used to spend almost 87% of
their time in closed environments (houses, offices, schools, etc.). This percentage recently
increased due to the change in people’s habits ascribable to the COVID-19 pandemic [2,3]
since people in many countries were forced to work from home. With this background in
mind, now more than ever, it is key to assess indoor environmental quality (thermal, visual,
acoustic, and air quality) to better understand the complex interaction between building
systems, indoor conditions, and users.

The presence of different pollutants in indoor environments poses several questions
about the health effects of the environments people live in. Household air pollution is
ranked as the ninth largest global burden of disease risk [4]. Despite being more urgent in
some areas of the planet, these issues are shared, to some extent, by most of the world’s
population. There is a pressing need to understand the interactions between outdoor

Sensors 2024, 24, 2176. https://doi.org/10.3390/s24072176 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072176
https://doi.org/10.3390/s24072176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7422-1138
https://orcid.org/0000-0003-1656-5850
https://orcid.org/0009-0005-3048-5576
https://orcid.org/0000-0002-2674-2163
https://orcid.org/0000-0003-0480-1166
https://doi.org/10.3390/s24072176
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072176?type=check_update&version=1


Sensors 2024, 24, 2176 2 of 36

contaminants, indoor sources, building envelopes, ventilation systems, and users. Air
quality is just one of the four parameters constituting IEQ that is now in the spotlight due to
the pandemic. Indoor air quality (IAQ) refers to the quality of the air inside a building, i.e.,
pollutants and particle concentrations. It is highly relevant to the health of human beings [5].
Indoor environmental quality, or IEQ, affects a broader range of factors, like visual, acoustic,
and hygrothermal comfort. It not only affects our physical health but also our mental
well-being and productivity [6]. In addition to the potential health implications of air
contaminants (see [7]), it is clear that there is much to investigate concerning contaminant
concentrations’ potential impacts on human cognitive performance [8,9]. There has been
much research on other parameters contributing to the IEQ. Even though it has been
studied for a long time, thermal comfort seems to need more research when it comes
to indoor parameters and human interactions. Two recent studies dealing with indoor
temperatures [10] and cognitive performance [11] point in opposite directions, underlining
the need for deeper insight into this topic.

In recent years, the growing availability of low-cost sensors (LCSs) able to track several
environmental parameters has triggered the successful exploitation of monitoring devices
in indoor environments. Many companies started producing and selling LCSs to monitor
IEQ through either hygrothermal parameters (i.e., air temperature, globe temperature,
surface temperature, air velocity, and relative humidity), visual and acoustic comfort, or
other indoor air quality (IAQ) parameters, such as harmful gas concentrations and the
presence of particulate matter (PM).

Researchers can better understand the monitored environment and building systems’
performance as they are now able to simultaneously measure many parameters at a reason-
able cost. Still, to obtain reliable results, the accuracy and uncertainty of the measurements
must be known and set beforehand.

The possibility of creating a diffused network of sensors, connected to the building
management and control system (BMCS), can lead to a drastic improvement in IEQ. Sev-
eral government-funded projects and policies promoted by different institutions [12] are
currently supporting research on LCSs for IEQ. The modern paradigm of nearly/net zero
energy buildings (nZEBs)—which were made mandatory for new construction projects in
the EU in January 2021 (see [13])—requires a network of sensors to monitor in real time the
indoor environment, to reduce energy consumption, and to increase occupants’ comfort.
Electricity consumption has been increasing from year to year in private blocks, in apart-
ments, in public institutions, and in data centers, as shown in [14]. Due to the increasing
use of all types of electrical devices, in the field of control systems for human health, saving
electrical energy has become a very important feature for monitoring devices.

Ref. [15] describes a paradigm shift from the early development of expensive, stationary,
and complex monitoring instruments employed by the few able to afford them—i.e., govern-
ments, industry, and researchers—to the widespread use of low-cost, portable, and user-friendly
systems that can be directly owned by communities and individuals. Since then, many studies
have reported on LCS-based monitoring stations [16–21]. On the one hand, this allowed for
the rise of a new concept of “smart” sensors, which are intrinsically cheaper, lighter, smaller,
and easily connected to the Internet. On the other hand, these platforms happen to still be
poorly characterized in terms of sensors’ uncertainty and/or project-specific tools with a low
level of adaptability. Nevertheless, the availability of these sensors has led to many scientific
publications, and over the last decade, several reviews have been published. Each of these
reviews is focused on a different topic, some examples of which are listed below. Ref. [12]
analyzed the impact of sensor technology in different communities and classified different
projects according to the nature of their funding, either publically funded, commercially funded,
and/or crowdfunded. The authors reported that around 30% of the projects turned out to be of
the latter type, i.e., funded by a private company or by a group of people via crowdfunding.
According to the authors, this represents a paradigm shift in air quality monitoring, which has
been historically implemented by government organizations. Other works have focused on
characterizations of one group of sensors/monitors, such as for the monitoring of PM [22,23]
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or gaseous pollutants [24–26]. Other studies present a general state-of-the-art overview and
relevant applications of LCSs for IEQ [27–33]. Since these studies analyzed different databases
and had different search queries and selection criteria, they often did not obtain the same
results. Ref. [32] detected an overall lack of accuracy in the measured environmental parameters
reported in several works. This was partly due to the great number of studies on the topic that
can be considered “grey literature”, which did not use or detail a technical approach in terms
of the calibration and performance of sensors. Moreover, even in the scientifically validated
literature, the authors found that almost 40% of the analyzed works did not calibrate the sensors
used or validate their data. According to the authors, this may hamper data reliability and
eventually reduce people’s estimations of the beneficial effects of introducing such sensors into
their everyday lives.

1.1. Literature on LCSs

The literature on LCSs is quite vast. In this section, we report the papers that are
relevant to this work. Ref. [34] tried to address some of the most common issues concerning
LCS-based IEQ monitoring platforms (i.e., the trade-off between energy consumption,
measurement accuracy, and costs). The authors also developed algorithms to smooth out
the collected data, carry out auto-calibration when needed, and optimize data transmission
to save energy. No proper calibration was performed on the sensors. Another extensive
series of studies was completed at the University of Sydney, Australia [20,21,35]. These
papers introduce the SAMBA (Sentient Ambient Monitoring of Buildings in Australia)
system, designed for monitoring air quality and thermal, visual, and acoustic comfort in
office buildings. For all the measured quantities, the authors listed the main reference
standards in different countries. Also, they provided the results of comparison tests carried
out with calibrated laboratory equipment, thus showing the possible use of LCSs for IEQ.
A similar concept was developed in [19,36] using the nEMoS (nano Environmental Moni-
toring System) device, equipped with CO2, illuminance, air speed, air temperature, radiant
temperature, and relative humidity sensors. The system featured an open-source hardware
and software platform to handle and share the measured data. Some of the sensors were
compared with calibrated laboratory equipment to verify their behavior. The results of
the work of [37] took advantage of the Arduino platform and Xbee module for data trans-
mission. The authors claimed to have performed a proper calibration of the gas sensors
by comparing their readings with a professional-grade instrument inside a sealed bag, in
which different concentrations of several gases were introduced. In the same year, the
authors of [16] published the results of the OSBSS (Open Source Building Science Sensors)
system, which uses open-source software to collect data on air temperature, relative humid-
ity, illuminance, motion, CO2, and pressure. The system had no wireless data transmission
module, but it could acquire long-term data and store them on a local drive. The system
was powered by a lithium-ion cell with an expected life of 1 year with a 1 min logging
interval. Ref. [38] presented a different solution. In the framework of the AirSenseEUR
project, the authors developed an integrated system to monitor air temperature, relative
humidity, pressure, and the concentration of O3, NO2, NOx, and CO. When integrated into
an IoT (Internet of Things) network, the monitoring platform, connected to the BMS, can
thoroughly assess (and affect) the thermal comfort and air quality in buildings. However,
the authors presented no details about the sensors’ performances, though they described
future steps toward proper sensor calibration. An interesting option is presented by the
authors of [17], since their battery-powered LCL (Low-Cost Logger) capable of measur-
ing air temperature, air speed, mean radiant temperature, relative humidity, illuminance,
sound pressure level, and CO2 concentration also features a graphic user interface to collect
information about the personal comfort of occupants through a survey presented on the
touch screen of the device. Still, no details about the sensors’ performance in terms of mea-
surement accuracy were reported, except the ones provided by the sensors’ manufacturers.
Regarding sensor calibration, the authors of [39] developed a procedure to comparatively
cross-calibrate their low-cost sensors (monitoring air temperature, relative humidity, CO2,
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VOC, HCHO, NO2, and O3) by synchronizing their signals after simultaneous data acquisi-
tion. However, this procedure did not appear to be reliable in providing the actual sensors’
accuracy. Ref. [40] designed a system based on Arduino’s system to monitor temperature,
relative humidity, illuminance, CO2, VOC, PM2.5, and room occupancy. The system was
tested in the field and provided long-range data acquisition. As in some of the previously
mentioned studies, no information about sensor calibration was provided, since the sensors
were assumed to be calibrated by the manufacturer. Ref. [41] focused on the aspects related
to data transmission protocols, intending to reduce power consumption related to data
transmission for a monitoring system capable of collecting data about temperature, relative
humidity, PM, gas concentration (O2, O3, CO2, CO, NO2, etc.), illuminance, electromagnetic
radiation, and motion. No detailed information about the sensors’ accuracy was reported
in this study either. A simple but effective system was presented by the authors of [42].
They developed an open-source system based on Raspberry Pi, capable of monitoring
air temperature, globe temperature, relative humidity, pressure, CO2, VOC, PM, illumi-
nance, airspeed, and sound pressure level. Its wooden case, designed to avoid system
overheating and to allow for the collection of thermal comfort surveys from occupants, is
the most original aspect of this project. The accuracy of the sensors was not reported. In
contrast, the authors of [43] presented the ENVIRA system [44]. This multi-sensing unit
is equipped with air temperature, globe temperature, relative humidity, CO2, airspeed,
tVOC, pressure, sound pressure, illuminance, and PM2.5 sensors. The system was tested in
different offices and educational buildings, and the measurement results were employed
to provide an indicator of the overall quality of the environment. In this case, the sensors’
accuracy was derived either from the literature or from direct comparisons with reference
instruments. In [44], a comprehensive assessment of LCSs for indoor air quality monitor-
ing was carried out through the application of different calibration models. In particular,
the performances of CO, NO2, and O3 sensors were evaluated against different machine
learning (ML) methods. We mention this study as it uses the open-source approach and
can serve as a starting reference, together with [45], for state-of-the-art artificial intelligence
(AI) calibration methods.

EQ-OX Concept

These works influenced the authors of the current paper in the design and develop-
ment of a low-cost, customizable, and inherently flexible platform, Environmental Quality
bOX (EQ-OX), to assess the majority of IEQ parameters that are important for building
users at the same time. EQ-OX has some main features that differentiate it from previously
developed monitoring kits, listed as follows:

• Flexibility—EQ-OX was conceived to allow for the replacement of sensors following
developments of the market toward more reliable and robust LCSs. This feature is
derived from the development principle adopted for both hardware and software
components. Environmental monitoring campaigns ask for modular platforms, i.e.,
platforms made up of independent hardware parts (data acquisition and transmission
cards and sensors) that can be replaced or expanded with ease depending on the
specific research focus, sensor maintenance needs, or sensor upgrade actions.

• Number of sensors—compared to previous works, EQ-OX increases the number
of monitored parameters to allow for a more in-depth analysis of IEQ and more
possibilities to correlate it with human health and productivity.

• Lightweight correction algorithm—The LCS accuracy provided by manufacturers
cannot be accepted outright. Many different techniques can be applied to calibrate
LCS sensors against reference instruments. Nowadays, a mainstream approach is to
involve ML methods for data processing, which demonstrate impressive results in
improving the correlation between LCSs and reference time series. However, this
requires a considerable amount of computational effort and computer scientists to
properly set up and train the sensor calibration pipelines. Moreover, different sensing
principles require different AI methods, making the calibration of a multiparameter
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sensing kit time and energy consuming. In order to ease the adoption of the EQ-OX
concept from a software point of view, a lightweight linear correction algorithm is
suggested, which, for most of the LCSs analyzed in this work, is able to bring the
accuracy performance to acceptable values.

1.2. Aim of the Study

The main goal of this paper is to present the development of EQ-OX, a small and
cost-effective system that can detect the main indoor hygrothermal parameters and air
quality indicators of an indoor environment. We present the results of a comparison
between the behavior of EQ-OX and calibrated professional-grade instruments under
controlled laboratory conditions or in real indoor environments. Using a benchmarking
process, we found the best trade-off between the accuracy of measurements and the costs,
and we were able to decide whether some quantities may be neglected or derived from
other measurements without jeopardizing our main goal, i.e., to achieve a suitable level of
accuracy with reduced costs for the greatest number of diverse parameters. The present
paper aims at: (i) detailing the EQ-OX system architecture, which was worked out based
on research requirements for indoor environmental quality monitoring; (ii) providing an
algorithm to rapidly estimate the improvement in the LCSs’ accuracy that can be obtained
by a linear correction after comparing them with calibrated professional-grade instruments;
(iii) reporting the ranking obtained for all 15 LCSs embedded in EQ-OX; and (iv) describing
a selection of best practices that may further reduce the inaccuracy of measurements when
the system is under operational conditions, thus enhancing the trustworthiness of the
acquired data.

2. Materials and Methods
2.1. Description of the EQ-OX System
2.1.1. Case, Main Hardware, and Firmware

The EQ-OX system is composed of a 20 × 12 × 8 cm PLA 3D-printed box designed
for this experiment. Figure 1a shows a rendered image of the system, while a sketch of the
positioning of the inner sensors is shown in Figure 1b. Table 1 shows the system’s main
components and their costs.

Table 1. General information about the main EQ-OX hardware.

Hardware Component Brand Model Price (EUR)

Motherboard Eurac Research/Eladit
(Bolzano/Pordenone, Italy) Unique (V.1) 130

Lorawan module Libelium (Zaragoza, Spain) LoRaWAN multiprotocol radio shield +
Microchip RN2483 110

Custom case Eurac Research/Studio7B
(Bolzano/Brescia, Italy) Unique (V.1) 50

Power supply Meanwell (Taipei, Taiwan) SGAS06E07-P1J 15

The aim of our design was to obtain a compact and robust device, while obtaining the
minimal aspect to simplify installation within residential and commercial buildings.

The design also aimed at full scalability and adaptability to different scenarios. For
this purpose, each sensor and component has a dedicated internal or external slot where it
can be hosted and, if needed, removed. Customized openings allow for easy access to the
power connectors and to the main control board, with the possibility of loading or updating
the EQ-OX firmware. An open lattice running all around the sides ensures continuous
ventilation, which is needed for monitoring air quality parameters and to prevent internal
overheating during operation.
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Figure 1. The EQ-OX system: (a) a 3D rendering of the system; (b) a wireframe view of EQ-OX,
highlighting the positioning of the inner sensors (Studio 7B).
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Data acquisition and preprocessing are carried out with a customized electronic control
unit based on the Microchip Technology (Chandler, AZ, USA) ATmega2560 microcontroller
(the same used on the Arduino Mega). This choice was mainly driven by the open-source
culture and user community that flourishes around Arduino, which guarantees a prompt
crowd-support when software maintenance is needed. The board was designed to promote
the customization of the system, with 29 port buses available (9 0–5 V analog ports, 2 volt-
age dividers for thermistors, 4 digital high–low ports, 8 I2C, 2 UART, 4 SPI). JST connectors
mounted directly on the board allow for solid connections and mounting/replacing sensors
quickly.

The firmware of the EQ-OX motherboard is based on Arduino programming language
and is loaded via serial device through USB (type B connector). As for the physical
connections, the main data acquisition software can also be updated to onboard new LCS
sensors, leveraging standard libraries. In fact, it is most likely that LCSs using the same
kind of connection bus require the same conditioning. Of course, the initialization headers
may differ, but this information is always provided by the manufacturer. As an example,
the specific I2C address stack and the register vocabulary come with the datasheet, in the
case of a digital LCS, or the appropriate sensitivity coefficient comes with a calibration
report, if we have an analog LCS. The rationale of the code running the EQ-OX is shown as
a flowchart in Figure A26, Appendix A.

2.1.2. Data Transmission

The unit is also provided with a Microchip RN2483 868-MHzcommunication module
based on LoRaWAN technology. This wireless protocol is highly convenient for environ-
mental monitoring in which the data throughput is limited and low power consumption is
crucial [46–48]. The LoRaWAN chip sends the acquired data to an independent gateway,
which can also collect data from other EQ-OX sensing units. The gateway acts as an infor-
mation packet forwarder from the measuring points (houses, factories, offices, etc.) to a
database through a mobile internet connection established using a router connected via
Ethernet directly to the gateway. The LoRaWAN architecture is typically structured in a
star or mesh topology [46], in which measurement nodes like EQ-OX devices lay at the
edge of a centralized network. The implementation reported in this work encompasses a
Multitech Conduit as an independent gateway, a Mikrotik router, and an InfluxDB database
hosted on Eurac Research’s server as a data instance storage. Table 2 shows the exact model
of the devices used and their costs.

Table 2. General information about the gateway and router.

Hardware
Component Brand Model Price (EUR)

Gateway Multitech MTCAP-868-001A 315
Modem/Router Mikrotik LtAP Mini LTE 120

It is worth mentioning that, at the motherboard’s firmware level, the sensor readout
data are encrypted into a simplified JSON data packet (compliant with the limited Lo-
RaWAN data throughput), which is then accepted and reshaped by the gateway to obtain
the final HTTP POST request for feeding the sensor time series on the database.

To ensure a negligible information packet loss ratio, each sensor measurement is also
stored locally on the microSD card of the main control unit. This allows the use of EQ-OX
in stand-alone operations and for low-network-coverage areas, such as remote locations
or technical rooms often located in the basement of a building. Moreover, the LoRaWAN
protocol, working in the 868 MHz band, ensures a good level of penetration for different
materials (brick walls, concrete, trees), i.e., lower losses in the presence of obstacles (see [49]).
In addition, the low-power radio module is limited to max. 14 dBm, enhancing the energy
efficiency of the whole system.
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2.1.3. Power Requirements

The system is powered by a universal AC/DC transformer providing a 7.5 V output.
The current applications of EQ-OX can take advantage of a direct connection to the power
grid since it allows for the usage of remotely controlled smart plugs to switch the system on,
according to one’s requirements, and monitor its power consumption. Since the electrical
grid is usually available in typical indoor monitored environments, the power connection
does not represent a limitation to EQ-OX’s employment in different scenarios. However,
to promote further exploitation of EQ-OX in the field, battery powering is currently being
investigated. The electrical consumption of EQ-OX depends on which of the selected
sensors are used. For a fully equipped sensing unit (i.e., all the sensors are connected at the
same time), the average power consumption is about 2.5 W.

2.2. Sensors and Experimental Conditions
2.2.1. Sensors and Reference Instruments

Table 3 details the sensors onboarded on EQ-OX. Each sensing unit of the EQ-OX
multi-parameter system has been benchmarked against a dedicated reference instrument.
Table 4 summarizes the main features of the high-resolution equipment used in these tests.

Table 3. General information about the different LCSs employed for the EQ-OX system. For each
measured quantity, the table reports the sensor brand/model, its typology, and price, together with
the range, resolution, response time, and accuracy declared by the manufacturer (if available).

Measured
Quantity

Brand/
Model Sensor Type Range Resolution Response

Time Accuracy Price (EUR)

Dry bulb
thermometer

Littlefuse
11492

NTC
thermistor −50 ÷ 150 ◦C 0.1 ◦C <15 s ±0.2 ◦C 14

Relative
humidity

Sensirion
SHT31

Capacitive
sensor 0 ÷ 100% RH 0.01% RH <8 s ±2% RH 12

Globe
thermometer

Littlefuse
11492

Black globe
(40 mm)

thermometer
−50 ÷ 150 ◦C 0.1 ◦C <15 s - 14

Surface
thermometer

Melexis MLX90614
ESF-BCI

Infrared
thermometer −40 ÷ 125 ◦C 0.01 ◦C <0.65 s ±0.5 ◦C 32

Air velocity Sensor Electronic
SensoAnemo 5150NSF

Hot-wire
anemometer 0.05 ÷ 5 m/s 0.005 m/s <1 s ±(0.02 m/s +

1.5% reading) 890

Pressure Bosch Sensortec
BMP388

Piezoresistive
sensor 300 ÷ 1000 hPa 0.016 hPa <0.1 s ±0.5 hPa 15

Illuminance AMS Osram AG
TSL2561

Visible light
photodiode 0 ÷ 40,000 lux 1 lux - - 16

Presence Parallax
28027

Pyroelectric
sensor 0 ÷ 6 m − - - 12

Carbon dioxide CO2 meter
K30

Non-dispersive
infrared sensor 0 ÷ 10,000 ppm 1 ppm <20 s ±(30 ppm +

1.5% reading) 75

Particulate
matter Alphasense OPC-N3 Laser scattering

sensor 0 ÷ 2000 µg/m3 0.35 µg/m3 - ±15% reading 340

Carbon
monoxide

Alphasense
CO-A4

Electrochemical
sensor 0 ÷ 500 ppm 20 ppb <20 s - 110

Nitrogen dioxide Alphasense NO_2-A43F Electrochemical
sensor 0 ÷ 20 ppm 16 ppb <60 s - 110

Ozone Alphasense
OX-A431

Electrochemical
sensor 0 ÷ 20 ppm 15 ppb <45 s - 110

VOC Alphasense
PID-AH2

Photoionization
detector 0 ÷ 40 ppm 10 ppb <3 s - 400

Formaldehyde DFRobot Gravity SEN0231 Electrochemical
sensor 0 ÷ 5 ppm 10 ppb <60 s - 45
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Table 4. General information about the calibrated instrumentation used to verify the behavior of
EQ-OX sensors: for each measured quantity, the table reports instrument brand/model, sensor
typology, and price, together with the range, resolution, and accuracy of the measurement declared
by the manufacturers.

Measured
Quantity

Brand/
Model Sensor Type Range Resolution Accuracy Price (EUR)

Dry bulb
thermometer TC Direct 4-wire pt100 RTD pt100 1/10

DIN −60 ÷ 180 ◦C 0.01 ◦C ±0.1 ◦C 40

Relative
humidity E+E Elektronik EE060 Capacitive

sensor 0 ÷ 100% RH 0.01% RH ±3% RH 122

Globe
thermometer Delta Ohm TP875.1.1

Black globe (150
mm)

thermometer
−30 ÷ 120 ◦C 0.01 ◦C ±0.12 ◦C 375

Superficial
thermometer TC Direct 4-wire pt100 RTD pt100 Class A −60 ÷ 180 ◦C 0.01 ◦C ±0.3 ◦C 45

Pressure Delta Ohm HD9408T Baro Piezoresistive sensor 800 ÷ 1100 hPa 0.01 hPa ±0.5 hPa 220

Illuminance LI-COR LI-201R Visible light
photodiode

0 ÷ 100,000
lux 1 lux ±5% reading 720

Carbon dioxide TSI 7525IAQ—Calc Non-dispersive
infrared sensor 0 ÷ 5000 ppm 1 ppm ±3% reading 2100

Particulate
matter

ThermoFischer Scientifc 5030i
SHARP

Laser scattering
sensor 0 ÷ 10,000 µg/m3 0.1 µg/m3 ±5% reading 3700

Carbon
monoxide Horiba APMA-370 Non-dispersive

infrared sensor 0 ÷ 50 ppm 10 ppb - 3500

Nitrogen dioxide Horiba APNA-370
Reduced-pressure

chemiluminescence
sensor

0 ÷ 1 ppm 0.1 ppb - 3500

Ozone ThermoFischer Scientifc 49i UV photometric
sensor 0 ÷ 200 ppm 1 ppb - 3570

VOC Ion Science Tiger Handheld
VOC

Photoionization
detector 0 ÷ 20,000 ppm 1 ppb ±5% reading 2875

Formaldehyde Aeroqual EF HCHO Electrochemical
sensor 0 ÷ 10 ppm 10 ppb ±5% reading 675

2.2.2. Experimental Conditions

This section reports our experimental setup for testing purposes. In particular, we can
cluster the sensors by how the tests were carried out, namely in supervised environments
or unsupervised environments.

Sensors tested in supervised conditions:

• Air temperature is measured through a 10k negative temperature coefficient (NTC)
thermistor that ranges from −20 to 50 ◦C, with tabulated accuracy of ±0.2 ◦C. This is
a cheap, reliable, easy-to-use, and adaptable temperature sensor. The characterization
of the temperature sensors was carried out in a climatic chamber. This also allowed us
to test the sensor considering the influence of the whole EQ-OX monitoring system
(e.g., overheating of internal components and shielding of the sensors). As a reference
instrument, an RTD Pt100 1/10 DIN sensor (TC Direct, Torino, Italy) was used. The
characterization was carried out in the range of 10–35 ◦C.

• Mean radiant temperature (MRT) is derived by the measurement of globe temperature
performed with a black globe thermometer consisting of a black sphere, with a 10
k NTC thermistor inside [50]. The use of a 40 mm black sphere represents a good
compromise between the accuracy of the MRT measurement and the response time [51].
The EQ-OX’s 40 mm self-assembled black sphere globe thermometer was compared
with a calibrated 150 mm black globe thermometer (model TP875.1.I from DeltaOhm,
Padova, Italy featuring a Pt100 class-A temperature sensor). It should be noted that
the certificate, which is issued by the suppliers of this type of instrument, concerns a
calibration of the internal temperature sensor but no uncertainty is given on the actual
globe thermometer. Both sensors were placed in Eurac Research’s climatic chamber,
where the temperatures of each wall could be individually controlled. The devices
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were positioned in the room’s center and a fan was used to modify the ventilation
during the different tests to evaluate the influence of both radiative and convective
heat exchange on the globe temperature sensor. The temperatures of the walls were
programmed to vary from 12 to 30 ◦C, resulting in a variation in the globe temperatures
between 17 and 22 ◦C. For the correlation, we used a smaller range, from 18.5 ◦C to
21.5 ◦C.

• Relative humidity is detected with an SHT31-D CMOS sensor chip from Sensirion,
Stäfa, Switzerland, which declares a relative humidity (RH) measuring range between
0% and 100% RH with an accuracy of ±2% RH. Polymer-based capacitive humidity
sensors, such as the SHT31, show good linearity in the humidity range that is rel-
evant in most residential and industrial conditions, i.e., between 20% and 80% RH.
Yet, for low humidity values (0–20% RH), this kind of sensor often exhibits highly
nonlinear characteristics. Ref. [52] presented the results of some experimental trials
of CMOS polymer-based capacitive humidity sensors. The relative humidity sensor
was characterized inside a climatic chamber. The characterization was performed in
the range of 20–80% RH, which covers the most common values found indoors. The
characterization was carried out at two different isotherms, at 10 ◦C and 30 ◦C, to
evaluate the influence of low or high temperatures on the measurement of the relative
humidity. The reference sensor used for this test is an E+E EE060 that was previously
calibrated in an accredited calibration laboratory (LAT Center). As a general remark,
all humidity sensors usually measure humidity between 20% and 98%, because 100%
humidity is water, and below 20% is practically dry air. At high humidity above 85%,
the problem with polymer sensors is high hysteresis. Namely, when the humidity
is above 85%, the sensor needs a very long time (up to 1 min) to dehumidify and
measure the humidity again within the ±2% range. There is, however, a method of
measuring humidity using the quartz method with an open condenser, in which this
hysteresis is minimal (in the range of less than 1 s), as shown in [53].

• Surface temperature is measured with a Melexis MLX90614ESF-BCI (Ypres, Belgium)
infrared thermometer mounted on the tip of a flexible arm. The sensor shows an
accuracy of ±0.5 ◦C in the range of −20–50 ◦C. The sensor has a 5◦ cone-shaped field
of view (FoV) that determines the relationship between the distance and the area of the
walls on which the average temperature is measured. Its flexible support allows the
sensor to be pointed towards the object whose surface temperature is to be measured
(e.g., radiant ceiling or radiant wall). Tests for the EQ-OX surface temperature sensor
were carried out using the same configuration as that for the globe thermometer.
By controlling the surface temperatures of each wall separately (ceiling and floor
included), it is possible to compare the readings of the EQ-OX surface temperature
sensor with 1/10 DIN Pt100 thermometers (TC Direct, Torino, Italy) featuring a metal
plate terminal connected to the surfaces. During the tests, we set up a dynamic
variation in the temperatures of the different walls to simulate actual non-stationary
conditions.

Sensors tested in unsupervised conditions:

• Pressure is measured with a Bosch Sensortec BMP388 (Reutlingen, Germany) environ-
mental integrated digital sensor that uses a piezoresistive pressure-sensing element to
monitor the air pressure in the range of 900 to 1100 hPa (T = 25–40 ◦C), with absolute
accuracy of ±0.5 hPa, as declared by the manufacturer. The pressure sensor was
tested in standard conditions, meaning common values of ambient pressure in indoor
applications were used, by comparing data from the Bosch Sensortec BMP388 installed
on EQ-OX and the portable Delta OHM HD9408T BARO (Padova, Italy) instrument
that was used as reference.

• Air velocity is monitored with a SensoAnemo 5150NSF hot-wire anemometer from
Sensor Electronic(Gliwice, Poland), i.e., an omnidirectional air velocity and air temper-
ature sensor, specifically sensitive to the medium–low air velocity, which is mainly
relevant in indoor environments. The manufacturer states an operating range of
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0.05–5 m/s with an accuracy of ±(0.02 m/s + 1.5% of the reading). The omnidirec-
tional anemometers produced by Sensor Electronic are quite expensive in comparison
with the other LCSs installed on EQ-OX. The manufacturer calibrates and applies
compensation for the impact of temperature changes on air velocity measurements
(air temperature during operation may differ from air temperature during calibration)
per single unit, and the compensation and correction coefficients are programmed into
embedded EEPROM memory. Due to the lack of a wind tunnel or a sufficiently low
turbulent airflow generator, it was not possible to carry out internal tests for compari-
son with other anemometers. The variability in air motion in open field would not
allow us to draw conclusions about the suitability of the Sensor Electronic anemometer
compared to that of a reference instrument, even if the instruments are placed close to
one another. As no previous tests using this instrument were found in the literature,
we relied on the data sheets issued by the manufacturer.

• Illuminance is measured with an AMS Osram AG TSL2561 (Premstätten, Austria) light sen-
sor that detects both infrared and visible light in the range of 0–4000 lux, with two different
photodiodes to approximate the response of the human eye. As specified in the datasheet,
the performance of TSL2561 was characterized by the manufacturer providing the lux
approximation equations, which were integrated into a correction software. However,
AMS does not provide any traceable calibration certification or any value of measurement
uncertainty. A qualitative analysis of the illuminance sensor performances was carried out
by comparison with the LI-COR LI-210R (Lincoln, NE, USA) certified instrument under
indoor natural illuminance. The reference device also embeds a photodiode as a sensitive
element, centered on the visible light band.

• Presence/motion sensor is used to detect the occupancy of the monitored environment.
The Parallax 555-28027 (Rocklin, CA, USA) selected for this purpose, is a passive
sensor that measures changes in the infrared energy emitted by surrounding objects.
The sensor provides a good estimation of the presence of occupants in a monitored en-
vironment, even though other details (such as the number and positions of individuals,
as well as their activity) are neglected.

• Carbon dioxide is measured through a CO2 meter (Ormond Beach, FL, USA) K30
digital CO2 sensor based on non-dispersive infrared technology that calculates the per-
centage of electromagnetic absorption of a particular wavelength, with ±(30 ppm + 3%
of the reading) accuracy in the range of 0–2000 ppm. The CO2 K30 sensor integrated
into EQ-OX was compared with a TSI 7525 (Shoreview, MN, USA) dual-wavelength
NDIR CO2 sensor with a calibration certificate from an accredited calibration labora-
tory (LAT). The instruments were placed close to each other inside an office of about
30 m2 occupied by 5 to 15 people a day. Data were acquired for a whole week.

• Carbon monoxide, nitrogen dioxide, and ozone are monitored with three 4-electrode
electrochemical sensors: CO-A4, OX-A431, and NO2-A43F. The combination of these
sensors takes into account the cross-sensitivity of the O3 sensor with NO2. The three
A4 sensors are connected to the same analog front-end (AFE) circuit board, specifi-
cally designed for an easy power supply and value readouts, as well as to mitigate
electrical noise issues. To monitor the concentration of carbon monoxide, nitrogen
dioxide, and ozone, EQ-OX embedded three Alphasense (Great Notley, Braintree, UK)
electrochemical sensors, namely CO-A4, NO2-A4, and O3-A4. In the present study, the
Alphasense electrochemical sensors were benchmarked against three high-resolution
reference instruments, two Horiba APMA-370 (Kyoto, Japan) instruments for CO and
NO2, and a model 49i ThermoFisher Scientific (Waltham, MA, USA) instrument for
O3, respectively. In our case, the LCS and the reference instruments were kept in a
constant air volume flux (0.9 L/min), in which a suction pipe delivered outdoor air
samples into a cabinet hosting the sensing systems. Moreover, the environmental
conditions during the test were steady as the cabinet was provided with cooling feed-
back, capable of controlling both temperature and relative humidity. Such favorable
conditions allowed for long-lasting tests (several weeks of continuous benchmarking).
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• Particulate matter is detected with a laser scattering particulate detector: the Al-
phasense OPC-N3 (Great Notley, Braintree, UK). It uses laser beams to detect particles
from 0.35 to 40 µm. Count measurements are converted into mass concentrations
of PM1.0, PM2.5, and PM10 using embedded algorithms. The device’s performances
have already been evaluated in previous studies, such as the one carried out by the
authors of [54]. According to the manufacturer, the device could show cross-sensitivity
with water vapor molecules for relative humidity above 95%. Ref. [55] reported high
errors for increasing values of relative humidity. In our study, the range of interest
for relative humidity was 20–80%, in which the PM sensors should show negligible
level of cross-sensitivity with water. Tests for the particulate matter sensors were
carried out in the same conditions as those of the Alphasense electrochemical sensors.
In this case, the comparison was made between EQ-OX (embedding an Alphasense
OPC-N3 PM sensor) and a Thermofisher scientific 5030i SHARP (Synchronized Hybrid
Ambient, Real-time Particulate Monitor)particulate monitor instrument. The readout
algorithm implemented into the OPC-N3 also considers T and RH as correction factors.
Anyway, the indoor conditions of the monitoring station hosting the test are controlled;
therefore, no extreme T or RH values are encountered.

• Total Volatile Organic Compounds (tVOCs) are assessed with the PID-AH2 sensor
from Alphasense (Great Notley, Braintree, UK), which was also tested by the authors
of [56], compared to a professional gas chromatograph. This sensor utilizes ultraviolet
light to ionize gas molecules. An electric field attracts ions, generating a current which
is proportional to the total concentration of VOC. The Alphasense PID-AH2 used in
EQ-OX was compared with an Ion Science (Fowlmere ,UK) TIGER Handheld VOC
gas detector, a portable PID instrument with a calibration certificate from an LAT. The
instruments were used in the same conditions as those of the CO2 sensors, i.e., they
were placed close to each other for a whole week inside an office of about 30 square
meters used by 5 to 15 people a day.

• Formaldehyde concentration is measured with the SEN0231 HCHO sensor from
DFRobot (Shanghai, China), i.e., a formaldehyde electrochemical sensor, which fea-
tures a breakout board that allows for easy connection, has a small size, and has good
resolution (0.01 ppm). Monitoring the presence of HCHO in an indoor environment
where several sources of this harmful gas may be present is of paramount importance.
Yet, the performances of HCHO are rarely assessed in the scientific literature. Also,
no information about its accuracy was provided. The most common problem faced
while measuring HCHO concentration is that electrochemical sensors can roughly
detect formaldehyde because their readings are affected by the whole concentration
of VOC gases. The manufacturer of the SEN0231 HCHO sensor module declares
that it can detect and measure formaldehyde concentration by itself, but from our
first tests, it seemed to be largely affected by the cross-sensitivities to different com-
pounds and alcohols, among others. The comparison was carried out with an Aeroqual
(Avondale, New Zealand) EF formaldehyde sensor, placing EQ-OX and the reference
instrument in a sealed box wherein different polluting sources were inserted (e.g.,
oils, candles, etc.). In all the tests, it seemed that this electrochemical sensor did not
respond according to the reference.

2.3. Correction Algorithm

This section describes the procedure we adopted to perform the assessment of the
sensors hosted by the EQ-OX. Since not all EQ-OX sensors could be tested in supervised/lab
conditions, a dedicated methodology was implemented to also exploit the dataset collected
during field campaigns.

For all LCS sensors, reference time series are available from comparison tests with high-
resolution instruments. Therefore, we implemented a customized algorithm, which assesses
the maximum correlation achievable between the LCSs and the reference based on a linear
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regression. The coefficient of determination (R2), the mean average error (MAE), and the root
mean squared error (RMSE) were calculated both on raw and corrected time series.

The core of the procedure consists of filtering the sensors’ time series to extract a subset
of intervals for which the trend of the reference (REF) measurements can be considered as
stationary. This is particularly important for the sensors tested in unsupervised conditions.
Indeed, some sensors are strongly influenced by environmental conditions, such as temper-
ature and relative humidity, such as when they are deployed in the field and the quantities
measured are affected by continuous fluctuations. However, from the analysis of the time
series, it is possible to pinpoint a number of time intervals in which T and/or RH variations
remain within a limited range. So, before applying any linear regression, two-step filtering
is applied to the time series to only select intervals of measurements that are not affected
by abrupt transients of the monitoring parameters and/or the environmental conditions
(e.g., T and RH).

To better clarify our assessment strategy, an example is reported hereafter which
explains all the steps of the algorithm. The quantities in the example are provided in
arbitrary units, as synthetic data are used. In Figure 2a, the hypothetical time series from
an LCS are shown by the red line, while the blue line represents the reference instrument.
At the same time, the temperature variation is also monitored (green line). For our first
step, a filtering operation on the environmental conditions (temperature in the example) is
performed as shown by the light-green horizontal bar (Figure 2a). This, in turn, provides
some intervals (vertical light-red bars) for the LCS and REF time series, wherein the
variation in temperature is reduced to within acceptable limits with respect to the impact
that the environmental parameter may have on the instruments. This first filtering step
results in the five intervals for LCS and REF that are reported in Figure 2b.
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Figure 2. First steps of the LCS time series filtering procedure, in which the variation in the envi-
ronmental temperature (a) and the reference target parameter (b) are evaluated to extract only the
regions (pink vertical intervals) where the sensor can be considered in steady-state conditions.

At the same time, the REF dataset is searched (Figure 2b) to find the parts in which
the time series are not affected by strong fluctuations or deviations (a simple limiting
condition on the first derivative magnitude aids the scope). The result is a subset of four
intervals wherein the temperature, as well as the REF measurement, can be considered
almost stationary (Figure 3a). At this point, both the REF and LCS data can be averaged
within all the intervals detected from the previous steps, obtaining the scatterplot presented
in Figure 3b.
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Figure 3. (a) Combination of the first two filtering steps, in which only four out of the five pink bars
present in (a) are kept. (b) Averaging applied to the pieces of LCSs and reference time series wherein
the environmental conditions are considered stationary.

Now, using the average values for the REF and LCSs within the four subsets, a
linear regression operation can be performed (Figure 4a) to extract the slope and intercept
coefficients that will be used for the time series correction (Figure 4b) and the estimation of
the R2 achievable by linear regression.
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Figure 4. (a) Linear regression computed upon the datapoints of Figure 3b. (b) Application of the
linear regression to the entire LCS time series for comparison with the REF time series after correction.

In this work, as a common condition for the environmental filtering parameters, we
used temperature and relative humidity of 23 ± 3 ◦C and 40 ± 10%, respectively (clearly,
this was not the case when temperature and relative humidity were the parameters under
evaluation). For the second step of the filtering procedure, the monitored parameter
was considered steady whenever the REF measurement fluctuation was within 5% of the
averaged value for at least 1 h (only in the case of unsupervised condition tests).

It is worth pointing out that a linear regression can also be performed if we consider
the complete dataset. However, the pre-processing steps described above lower the gap
between the results and those obtainable from a calibration procedure in a supervised
environment. Indeed, the filtering has a minor effect on the time series collected during the
tests in supervised environment, while it makes a remarkable difference to the time series
collected during the field campaigns.

In Section 3, the impact of the pre-processing steps is reported for all the EQ-OX
sensors, together with the results of the linear regression between the LCSs and the reference
instruments’ filtered time series.
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3. Results

For comparing the LCSs onboarded on EQ-OX, we classified each of them according
to the coefficient of determination (R2) obtained from the correction algorithm. We defined
a scale ranging from one to five, where a score of one means that the maximum value
achievable is R2 ≤ 0.2 and a score of five means that R2 ≥ 0.8. In this, we aim to provide a
ranking figure for assessing the LCSs’ quality. The correlation results between the LCSs’
and the reference instruments’ time series before and after the application of the correction
algorithm are reported in Table 4. Their corresponding RMSE and MAE values are also
listed in the four central columns. The last two columns of Table 5 show the pre- and
post-correction quality scores for all of the LCSs. The five circles in a row are filled up
according to the scale defined above.

Table 5. Results of the application of the linear correction algorithm described above. The initial
correlation is the value of R2 for the LCSs compared with the reference instrument; the final correlation
is the value of R2 * after the correction has been applied; and the entity of the applied correction can
be seen from the values of the slope and intercept of the linear regression curve. The score is based
on the value of the R2, ranging from 1 for R2 < 0.2 to 5 from R2 > 0.8.

Measured
Quantity

Initial
Correlation

R2

Corrected
Correlation

R2

Initial
RMSE

Corrected
RMSE

Initial
MAE

Corrected
MAE Initial Score Final

Score

Dry bulb
thermometer 0.99 1 0.67 0.47 0.62 0.31

Relative
humidity 0.99 0.99 2.08 1.45 1.41 0.43

Globe
thermometer 0.97 0.99 0.16 0.10 0.13 0.08

Superficial
thermometer 0.72 0.96 0.66 0.24 0.55 0.20 ⃝

Pressure −83.49 0.98 56.40 0.76 56.39 0.61 ⃝⃝⃝⃝

Illuminance 0.61 0.80 716.92 520.10 193.23 106.17 ⃝

Carbon
dioxide 0.78 0.92 44.83 27.17 40.12 10.41 ⃝

PM1 −0.21 0.64 4.71 2.50 2.90 1.78 ⃝⃝⃝⃝ ⃝

PM 2.5 0.10 0.61 6.15 3.97 3.73 2.87 ⃝⃝⃝⃝ ⃝⃝

PM10 −1.15 0.37 31.98 7.03 15.90 5.16 ⃝⃝⃝⃝ ⃝⃝⃝

Carbon
monoxide 0.14 0.79 0.15 0.07 0.11 0.04 ⃝⃝⃝⃝ ⃝

Nitrogen
dioxide 0.47 0.68 5.39 3.98 4.24 2.88 ⃝⃝ ⃝

Ozone −2.85 0.92 29.96 4.20 27.83 3.05 ⃝⃝⃝⃝

VOC −15.07 0.60 490.52 77.85 397.15 35.15 ⃝⃝⃝⃝ ⃝

Formaldehyde −37.69 0 0.12 0.02 0.12 0.02 ⃝⃝⃝⃝ ⃝⃝⃝⃝

* R2 can have also negative values. Comparing the fit of the chosen model with that of a horizontal straight line
(0 hypothesis), the chosen model could have a worse fit and then R2 could be negative.

The LCS ranking was accomplished based on the coefficient of determination com-
puted over the full dataset. This fully mimics the procedure that is usually followed in most
scientific papers that apply ML to LCSs, in which the dataset coming from a continuous co-
location of DUT and REF is split into two parts: the training and the prediction sets [44,45].
In particular, the second column of Table 6 reports the ratio between the number of samples
used to calculate the linear regression and the total number of samples belonging to each
dataset. We note that, in the case of the tests carried out in an unsupervised environment,
the splitting ratio is always less than 10%. This means that the evaluation of the correction
is performed for new data, representing mostly transients or at least non-stationary con-
ditions. Moreover, the R2 estimation was carried out considering the full range of values
collected during the tests, which in most cases was wider than the range of the setpoints
used for the linear regression. It is likely that the outermost parts of the full dataset’s range
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are not identified as stationary setpoints because they result from rapid and steep variations
in the measured quantity (pulses, steps, etc.).

Table 6. Information on the dataset used to perform the linear regression on all LCSs. The ranges and
average values are reported together with the slope and intercept obtained from the linear regression
calculation. The last entry for formaldehyde is not reported as no linear correction can be calculated
on a single datapoint.

Measured
Quantity

Regression
Dataset
Samples

Sampling Rate Mean REF
Total Dataset

Min/Max REF
Total Dataset

Mean REF
Regression

Min/Max REF
Regression

Correction
Slope

Correction
Intercept

Air
temperature

1287 of 2701
tot 10 s 22.9 ◦C 10.0–35.5 ◦C 23.2 ◦C 11.2–35.0 ◦C 1.01 −0.2

Relative
humidity

1079 of 2096
tot 10s 51.0% RH 20.4–97.8% RH 48.7% RH 21.3–77.4% RH 1.08 −3.2

Globe
temperature

467 of
1913 tot 1 min 19.7 ◦C 17.2–21.9 ◦C 19.9 ◦C 18.8–21.4 ◦C 0.93 1.55

Surface
temperature

872 of
1921 tot 1 min 19.9 ◦C 13.3–31.4 ◦C 20.5 ◦C 13.8–30.4 ◦C 1.32 −7.1

Pressure 1192 of 12,245
tot 1 min 990 mbar 974–1000 mbar 986 mbar 975–998 mbar 1.06 3.33

Illuminance 990 of 18,480
tot 1 min 166 lux 0–12,498 lux 227 lux 34–428 lux 1.88 −65.3

Carbon
dioxide

1799 of 339,840
tot 1 min 433 ppm 369–1051 ppm 609 ppm 400–936 ppm 1.01 −42.6

PM1 502 of
9755 tot 10 min 7.5 µm/m3 0–30

µm/m3 9.43 µm/m3 3.09–16.67
µm/m3 0.56 3.47

PM 2.5 447 of
9755 tot 10 min 10.3 µm/m3 0–59 µm/m3 19.9 µm/m3 3.58–38.0

µm/m3 0.72 3.32

PM10 920 of
9755 tot 10 min 16.4 µm/m3 0–159 µm/m3 19.30 µm/m3 7.17–31.0

µm/m3 0.27 7.75

Carbon
monoxide

518 of
5043 tot 10 min 0.39 ppm 0.1–2.3

ppm 0.41 ppm 0.19–0.60 ppm 1.2 0.02

Nitrogen
dioxide

650 of 11,668
tot 10 min 17.38 ppb 2–46

ppb 19.63 ppb 4–37
ppb 1.80 −15.47

Ozone 259 of 11,668
tot 10 min 15.71 ppb 0–74

ppb 15.3 ppb 9–23
ppb 0.61 −11.06

VOC 987 of 220,886
tot 1 min 60 ppb 1–1208

ppb 140 ppb 44–244 ppb 0.25 −6.57

Formaldehyde 202 of
2504 tot 1 min 0.26 ppm 0.18–0.31 ppm n.d. n.d. n.d. n.d.

Table 6 reports the overall size of the datasets and the subset through which the
linear regression is calculated for each LCS. We also list the sensors’ sampling rate (as a
pre-processing step, all LCS time series are resampled to the sampling frequency of the
reference instruments). Furthermore, statistics such as the average, the minimum, and
the maximum values of the full and the filtered REF time series are also listed. The last
two columns of the table report the slope and the intercept found for the linear regression
related to the various sensors.

For the reader’s convenience, only a few plots regarding the assessments of specific
sensors are reported as examples in this section. Figure 5 shows the results obtained for
the tVOC sensor. The upper plot represents the linear regression computed on the portion
of the dataset filtered against the stationary criteria outlined in Section 2.3. The averaged
values are shown with standard deviation error bars. The x-axis represents the reference
and the y-axis represents the device being tested. Both axes share the same scale range and
the bisector is shown by the dashed orange line, which serves as a visual guide highlighting
how much the LCS diverges from the reference. In the lower plots, a portion of the time
series for the LCS and the reference instrument before and after the application of the
correction algorithm is shown. A comprehensive collection of all the plots related to the
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other sensors can be found in Appendix A. For the purpose of experimental replication, a
major part of the dataset analyzed in this work is publicly available [57].
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Figure 5. Measurement of the concentration of total VOC (top panel). (a) Linear regression plot
representing the reference instrument on the x-axis and the device being tested on the y-axis. Both
axes share the same scale range and the bisector is shown by the dashed orange line. (b) Portion of
data from actual measurement, showing an offset between the reference and EQ-OX. (c) Good visual
agreement achieved between the two time series after the linear correction algorithm is applied. An
R2 score from −15.07 to 0.6 confirms the effect of the correction procedure (see Table 4).

We can make a few general remarks starting from what can be observed in Figure 6. It
shows the graphical representation of the CO time series pre- and post-correction. The results
obtained by our method may seem reasonably accurate, but if we take a closer look at the
computed correlation values, low R2 scores are found. This can be explained as a visual effect
of smoothing (see also Figures A10, A12 and A14). Indeed, the plots clearly show the overlap
of the seasonal trends of the LCSs and reference instruments, especially when the time scale
covers several days. The steps and pulses of the time series, which distinguish the devices
by the different sensing principles, are indeed hidden in the graphical representation. These
contributions, however, are the main source of R2 degradation.
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Indeed, the correction algorithm is not able to consider inertia or intrinsic noises. In
particular, it is most likely that one LCS and its reference instrument do not share the same
time constants/response and are not affected by the same sources of noise. For instance,
most LCSs do react extremely fast to some external stimuli (sometimes even faster than
the physical target parameter they are meant to sense) mainly due to readout electronics.
In contrast, reference instruments are more accurate by design, and their time series are
commonly smoother and better at mimicking the target environmental parameter. More
complex AI-based approaches can cope with such problems, at the cost of a greater amount
of computational effort and longer calibration sessions [44]. Another factor to consider is
the sensing range; for all the tests in which the target environmental parameter was close to
the sensitivity of the LCS, low R2 values were recorded. For this reason, Table 4’s ranking
cannot be generalized for all the possible conditions, but it must be considered as valid
only for the reported experimental (indoor) conditions.

In the next session, a detailed analysis of the obtained results is carried out.

4. Discussion
4.1. LCSs’ Performance Assessment

Here follows a critical discussion of the results for each separate sensor, with references
when available to other previous studies, for the sake of comparison. We reiterate that the goal
of our work is to characterize the LCSs embedded in EQ-OX (considering various aspects) to
obtain to an assessment of their suitability for IEQ monitoring within the ranges of interest. We
do not aim to accomplish a full-fledged calibration of the sensors embedded in EQ-OX and
therefore deliver a fully validated instrument from a metrological point of view.

• Air Temperature—The coefficient of determination between the two instruments is
close to one even before the linear correction (Figures A1 and A2). Such a satisfactory
result already meets the IEQ requirements and the correction does not improve the
result significantly.

• Relative humidity—The correlation between the two instruments was high (R2 > 0.99),
as shown in Figures A3 and A4. At the extremes of this evaluation range, an increased
error appeared and reached a maximum of 3% RH. A strongly non-linear behavior for
values below 10% RH has also been analyzed by the authors of [52] for polymer-based
capacitive humidity sensors, such as the one embedded in EQ-OX.

• Globe temperature—The correlation between the reference and EQ-OX sensor is high
(R2 > 0.97), and differences of less than 0.5 ◦C were found throughout the range of
interest. However, the curves show divergent behavior between the two devices as
the temperature decreases (Figures A5 and A6), with the maximum error at the lower
end of the test range. It is, therefore, necessary to further analyze in future studies the
behavior of the sensor in a wider operating range by integrating the comparisons with
the analytical measurement of the MRT obtained from the walls’ temperature.
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• Surface temperature—The dynamic variation in the temperatures of the different
walls within the 1 h period to simulate actual non-stationary conditions led to a
difference between the EQ-OX measurements, which were affected by the whole field
of view exposed to the sensor and the actual surface temperature. This difference
is reduced in the intermediate values and increases as the temperature approaches
higher or lower values (Figures A7 and A8). Even if more tests are necessary, thanks
to our linear correction algorithm, it was possible to increase the R2 from 0.72 to 0.96.
For this sensor, the error varies with the temperature and shows a maximum value
of around ±2 ◦C for the higher and lower temperatures, while for the intermediate
values (i.e., around 22 ◦C), the error is negligible.

• Pressure—An offset of about 50 hPa was detected, which is much greater than the one
declared by the manufacturer as its accuracy (Figures A9 and A10). The application of
a linear correction allowed us to increase the R2 up to a value of 0.98.

• Illuminance—The illuminance LCS showed a small offset compared to that of the
reference instrument (lower than 1% of the LCS’s average values) for all the values
except for a few sharp peaks that the LCS is not able to detect properly (with an error
rate up to 20%). Yet, the coefficient of determination was improved to 0.80, as shown
in Figures A11 and A12.

• Carbon dioxide—For the carbon dioxide sensor, the linear correction performs well as
also reported by the authors of [58]. However, the maximum differences between the
LCS and REF of about 9% of the average values were found to be three times higher
than the ones declared in the datasheet of the manufacturer. The application of the
linear correction algorithm led to R2 = 0.92 (Figures A13 and A14).

• Carbon monoxide, nitrogen dioxide, and ozone—The average results are reported in
Figures A8–A10. Despite a Pt-1000 temperature detector present on the analog front-
end board, no temperature correction was implemented for EQ-OX. The operating
conditions will most likely be a standard temperature and pressure; thus, the correction
would have been negligible. Other studies have assessed the dependence of the
sensors’ readouts on air temperature and humidity. Ref. [59] reported that the CO-
B4 sensor was unaffected by humidity and temperature changes during chamber
testing. Ref. [60] reported that the EC sensor’s response varied with humidity by a
few percentage points, so it had a negligible quantity compared to typical ambient
concentrations.

Among the three sensors, O3 increases much more from the applied linear correction,
going from an initial R2 of −2.85 to an R2 score of 0.92 after the correction. NO2, in contrast,
reaches an R2 of only 0.68 post-correction, starting from an initial score of 0.47. It is worth
highlighting that the pollutants’ concentrations in the air during the tests were very low
(a few tens of ppb), as is commonly expected in an indoor environment. Different studies
of CO-A4 laboratory and field tests have been carried out by other research centers in the
past, including [59,61,62], which obtained excellent results in chamber conditions, with
reported R2 values greater than 0.99 with respect to those of the reference. However, these
field investigations demonstrated a significant deterioration and broad distribution of the
sensors’ performances. In our case, we report an increase from 0.14 to 0.79 R2 by applying
our linear correction.

Similar behavior to the CO sensor was found by the authors of [61] for the NO2 Al-
phasense sensor. The R2 was high under laboratory testing conditions and low for outdoor
applications, especially in moderate traffic conditions, when the pollutant concentrations
were lower.

As highlighted in the report “Summary of air quality sensors and recommendations for
application”, there is a very limited amount of scientific literature on electrochemical ozone
sensors, which makes their assessment extremely difficult. Using an Alphasense OX-B421
sensor, the authors of [62] studied its performance under chamber and field conditions.

During chamber testing, the correlation between the sensor response and the reference
instrument was found to be excellent with an R2 value greater than 0.99. However, during



Sensors 2024, 24, 2176 20 of 36

testing in the field as part of an air-quality monitoring station in Norway, they found R2

values = 0.01–0.66.

• Particulate matter—OPC-N3 tends to overestimate larger-diameter particles with
respect to the reference instrument. This is possibly due to the implementation of
the particle classification in 24 range bins. Such pre-processing starts clustering
the particle diameters from 0.35 to 2.5 µm with increasing efficiency from about
80% to 101% [63,64]. The best agreement was found for diameters of 1 µm with a
post-correction correlation of 0.64. This also resulted in the lowest RMSE and MAE
post-correction values: 2.5 and 1.78, respectively.

• In contrast, the RMSE and MAE values for 2.5 and 10 µm diameter PMs are bigger,
confirming that the reference and LCS time series share a lower correlation even
though the R2 improves after the application of the correction algorithm.

• Total Volatile Organic Compounds—The trend of the tVOC sensor integrated into
EQ-OX is similar to that of the reference. However, there is an overestimation of
the peaks and general offset between the signals of the two instruments. Figure 5a
shows the average values used to find the correction coefficient. The application of the
correction algorithm led to an R2 = 0.57. In Figure 5b, a portion of the measurement
is shown, in which it is possible to see how the two signals almost overlap after
the correction. This difference between the LCS and the gas detector may also be
due to the sensitivity of the instrument to VOCs that are different from isobutylene,
which is the sole gas used for the standard calibration and for the estimation of the
response factor. This parameter relates the PID sensor response against a particular
VOC with the PID response against the calibration gas (isobutylene). For instance,
if the response factor for a particular VOC is 0.5, the PID response is twice that for
isobutylene at the same concentration. This, however, works if we know which gas is
present within the measurement site. For this reason, the use of PID sensors is usually
more often indicated to control the overall trend, gather information on overall air
changes, or estimate total concentration peaks. To gain a better understanding of
the composition of tVOCs, a gas chromatograph able to identify specific molecules
should be used. The limit of such chromatographs is that they cannot be operated
continuously; therefore, portable instruments are relevant for the above-mentioned
qualitative purposes. The readout of PID-based tVOC sensors is usually biased by
the environmental temperature [23], and the producers provide correction formulas
and/or tables to cope with this. However, the EQ-OX suite is mostly intended for
indoor campaigns; therefore, we did not implement a strategy to implement for
significant temperature variations, as they are not expected in operational conditions.

• Formaldehyde—At the moment, we have not found on the market an LCS that can
be integrated into the EQ-OX system to monitor the concentration of formaldehyde
with reasonable accuracy. For instance, in our tests, the behavior of the LCS with
respect to the reference instrument happens to be completely uncorrelated (see Table 5).
Various studies on prototypes, such as a formaldehyde sensor based on Cu-codoped
ZnO nanomaterial [65] or one that uses UV light to activate a TiO2 plate for sens-
ing formaldehyde [66], are showing promising results, but these solutions are not
yet available in the market. Due to the crucial importance of the quantification of
formaldehyde indoors, developments in this regard will be continuously monitored to
find a solution that better fits our needs.

4.2. Field Application

The EQ-OX environmental monitoring system has been tested and developed in the
framework of different research projects. Some prototypal units have been exploited to
collect IEQ data, like hygrothermal parameters and air pollutant concentrations in offices,
laboratories, residential buildings, and educational buildings. From these preliminary tests,
we suggest some best practices regarding system deployment in order to mitigate possible
systematic uncertainties arising from suboptimal operative conditions. In particular, when
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the aim of a field study is the evaluation of the IEQ experienced by users, the sensing
system should be located as close as possible to the position of the occupants in the room.
The concentration of different pollutants, as well as the values of temperature, relative
humidity, air speed, and so on, may not be uniform in the room. Thus, all the following
precautions should be taken.

• The device must be placed inside the room in such a way that the measurements are
most representative of the usual position of the occupants. In the case of seated people,
the ASHRAE Standard 55-2010 [67] recommends 0.6 m as the positioning height of the
device for a correct evaluation of air temperature, air speed, and PMV-PPD, while to
assess standing occupants’ perception, a height of 1.1 m is preferred.

• To prevent errors in thermal comfort analyses, the globe thermometer should receive
radiative heat from every surface in the room, including the floor. The ideal position is
the center of the room.

• Since, in many real cases, the center of the room may not be available, it is crucial to
avoid hidden or closed-off places that may not be representative of the whole occupied
volume of the room.

• For the same reason, also concerning the surface temperature measurements, EQ-OX
should be placed far from any surface that presents a different temperature compared
to that of the others in the room.

• Avoid exposing the sensors to direct solar radiation, which can significantly modify
the measured temperatures and the behavior of temperature-sensitive sensors (like
gas sensors). In the presence of an air conditioning system, avoid placing the device in
proximity to the inlet vents since the measured values would not be representative of
the room.

• Avoid conditions that can prevent the air from flowing into EQ-OX, as this could be
detrimental to the optimal detection of harmful pollutants.

• The accuracy of the illuminance sensor is irrelevant compared to the impact of incorrect
positioning. The key is to position the device in a manner that ensures that the
measurements represent the average environmental conditions.

• The pollutant sensors have a limited life if subjected to standard environmental condi-
tions. In the case of a system installed in harsh environments, this time may be greatly
reduced. Therefore, it is needed to monitor the sensors over time in order to correctly
assess their aging.

These general guidelines must be adapted to each specific scenario.

4.3. EQ-OX System Costs

Considering the prices of the individual EQ-OX components, which are reported in
Tables 1 and 2, the overall cost of the kit updated in 2021 is between EUR 1500 and 1800 for
the version without an anemometer. The cost of the latter depends on the selected sensor
and the accuracy required. The one installed in the presented kit is EUR 1000.

In parallel to the hardware costs, a physical maintenance plan to periodically scrub the
sensors operating in a dirty environment must be put in place. However, different sensing
principles require different cleaning procedures. As an example, solvents, solutions, or
ultrasound can be used for electrochemical sensors; special care should be taken not to
impair their sensing capabilities by using overly aggressive products. Compressed air
or acetone-based lens cleansers can be used for optical sensors. Still, delicate detergent
solutions can be used for the external cleaning of most kinds of LCSs. These actions can
definitely extend the sensors’ lifetime. However, a careful cost–benefit evaluation has
to be carried out, as many of the cleaning and re-calibration procedures that are usually
performed for high-accuracy instruments are unaffordable for LCSs. This aspect will be
studied extensively in a future work.

In Figure 7, an example of the installation and data collected from a field study using
EQ-OX is shown.
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4.4. Limitations and Perspectives

Our design and study of this fairly complex monitoring device had the following
limitations:

• The occupancy sensor is placed on the top part of the device shell. While this position
is convenient from a design point of view, it may cause some issues for the proper
detection of occupancy. A new version that is under development will integrate a
second sensor on the side of the box.

• The light sensor, which is placed on the top part of the device, may be shaded by the
globe thermometer, the anemometer, or other objects in the room near EQ-OX. While it
is difficult to solve this issue from a technical point of view without compromising the
compact design of the tool, this can be mitigated with some extra care in one’s selection of
where to place the box and its orientation with respect to windows or lights.

• To make the device as robust as possible, the length of the small metal pole that holds
the globe thermometer is quite limited. This may case some small deviations in the
readings due to the view factor between the globe and box itself. A version with a
detachable globe thermometer was tested, but this was not ideal for the stability of
the system. Anyway, as stated before and as reported in Figure A3, we expect a small
amount of deviation due to this.

• As EQ-OX is dedicated to continuous indoor monitoring, all the sensors have been
tested and corrected to value ranges that are typical within buildings (residential and
offices). Despite this, the work does not provide a range of ideal measures for all the
sensors. To do so, the performed tests should have been carried out for the full range
of possible values in the indoor environment for all the sensors. This is out of the
scope of this publication.

• Monitoring kits like EQ-OX, especially for air quality parameters, may be used for
the acquisition of trends to perform general IAQ evaluations, to spot cause–effect
phenomena, and to eventually implement awareness and early warning systems.
Anyway, the accurate measurement of absolute values should be validated by high-



Sensors 2024, 24, 2176 23 of 36

resolution instruments just when some threshold limits are reached and spotted by
EQ-OX.

5. Conclusions

The main purpose of the EQ-OX system is to provide robust data collection in real time
from different sensors assessing the main parameters (sound excluded) impacting human
perception in an indoor environment, with limited costs. Based on a state-of-the-art analysis
and with respect to the IEQ standards, it was possible to conceive a stand-alone device
capable of monitoring air temperature, globe temperature, surface temperature, pressure,
relative humidity, light intensity, the presence of people, the concentration of several
compounds (CO2, CO, NO2, O3, VOC), and the amount and dimensions of particulate
matter by implementing only LCSs. The aim of the current work is to verify if, out of any of
the tested LCSs, (i) high-quality measurements can be obtained even before the correction,
(ii) a lightweight algorithm based on filtering and a linear regression can noticeably improve
the sensors’ behavior, and (iii) the correlation between the LCSs and REF instrument within
the dataset is too poor to apply any correction.

From the comparison tests performed against the calibrated laboratory equipment, we
can observe that, for the main hygrothermal parameters, the coefficient of determination
between the LCSs and the reference time series are always close to 1 and the use of a
correction algorithm might not even be necessary.

On the other hand, the use of LCSs for other target environmental parameters can
lead to a lower accuracy of measurements, if the data are not properly corrected. Even by
using only a linear correction strategy, as in the current work, it is possible to noticeably
increase the coefficient of determination (R2). This is the case, for instance, for the surface
temperature, carbon dioxide, ozone, and tVOC LCSs benchmarked.

Yet, for some other quantities, namely particulate matter and nitrogen dioxide, the
use of the proposed correction algorithm does not significantly increase the coefficient of
determination, which is always below 0.5. The reason for this is justified when considering
the different sensing principles between the reference and EQ-OX sensors, which are
intrinsically non-correlated or cannot be correlated. In the end, the low-cost formaldehyde
sensor did not achieve admissible results in this study.

The accessibility of reliable and low-cost field measurements may drive the integration
of LCS monitoring systems like EQ-OX in various contexts. As an example, an interesting
application is the design of new building management and control systems able to control
an indoor environment based on data coming from a distributed and meaningful monitoring
system of different parameters at low sensing costs. Also, the paradigm shift described by the
authors of [15] (i.e., from standard government-funded air quality monitoring studies performed
with certified and expensive instrumentation to widespread, capillary, flexible, and low-cost
sensors) may be further pushed by sharing sensors’ performance analyses and shared correction
algorithms. Furthermore, during post occupancy evaluation (POE) surveys for IEQ assessments,
our capability to easily monitor all the parameters affecting the perception of an environment
near a single occupant or at least inside a room might promote a more in-depth understanding
of the overall comfort of the location under investigation.
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Appendix A 

In the following, the full sensors’ characterization is reported. 

 

Figure A1. Linear regression on the average values of air temperature in controlled conditions for 

the EQ-OX LCS with respect to reference instrument. 
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Figure A2. Raw (a) and corrected (b) time series of the air temperature in controlled conditions for 

the EQ-OX LCS and a reference instrument. 
Figure A2. Raw (a) and corrected (b) time series of the air temperature in controlled conditions for
the EQ-OX LCS and a reference instrument.
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Figure A3. Linear regression on the average values of relative humidity in controlled conditions for 

the EQ-OX LCS with respect to reference instrument. 
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Figure A4. Raw (a) and corrected (b) time series of the relative humidity in controlled conditions for 

the EQ-OX LCS and a reference instrument. 

 

Figure A5. Linear regression on the average values of globe temperature in controlled conditions 

for the EQ-OX LCS with respect to reference instrument. 

Figure A3. Linear regression on the average values of relative humidity in controlled conditions for
the EQ-OX LCS with respect to reference instrument.
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Figure A6. Raw (a) and corrected (b) time series of the globe temperature in controlled conditions 

for the EQ-OX LCS and a reference instrument. 
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Figure A8. Raw (a) and corrected (b) time series of the surface temperature in controlled conditions 

for the EQ-OX LCS and a reference instrument. 

Figure A6. Raw (a) and corrected (b) time series of the globe temperature in controlled conditions for
the EQ-OX LCS and a reference instrument.
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Figure A9. Linear regression on the average values of pressure in unsupervised conditions for the 

EQ-OX LCS with respect to reference instrument. 
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Figure A10. Raw (a) and corrected (b) time series of the pressure in unsupervised conditions for the 

EQ-OX LCS and a reference instrument. 
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Figure A9. Linear regression on the average values of pressure in unsupervised conditions for the
EQ-OX LCS with respect to reference instrument.
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Figure A12. Raw (a) and corrected (b) time series of the illuminance in unsupervised conditions for
the EQ-OX LCS and a reference instrument.
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Figure A20. Raw (a) and corrected (b) time series of ozone in unsupervised conditions for the EQ-
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Figure A23. Average values of formaldehyde in unsupervised conditions for the EQ-OX LCS and
a reference instrument. Due to the highly unstable behavior of the LCS, the algorithm could not
find more than one portion of the time series wherein to perform the comparison with the reference
instrument in the quasi-static approximation.
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Figure A24. Raw (a) and corrected (b) time series of formaldehyde in unsupervised conditions for 

the EQ-OX LCS and a reference instrument. 
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h�p://www.sensor-elec-

tronic.pl/pdf/MAN_AirDistSys5000.pdf 
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h�ps://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/bmp388/ 

Illuminance AMS TSL2561 

h�ps://ams.com/docu-
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Figure A25a: Picture. Figure A25b: The schematic of the EQ-OX mainboard. Figure A25c:
The rendering of its positioning within the EQ-OX case. Figure A25d: The diagram representing
all the connection buses used for onboarding the LCSs.
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43. Mujan, I.; Licina, D.; Kljajić, M.; Čulić, A.; And̄elković, A.S. Development of indoor environmental quality index using a low-cost
monitoring platform. J. Clean. Prod. 2021, 312, 127846. [CrossRef]

https://doi.org/10.1016/j.buildenv.2016.02.010
https://doi.org/10.1016/j.enbuild.2017.11.051
https://doi.org/10.3390/s150613012
https://doi.org/10.1016/j.buildenv.2018.12.010
https://doi.org/10.1016/j.buildenv.2018.12.016
https://doi.org/10.3390/ijerph14080909
https://doi.org/10.1016/j.envpol.2015.08.035
https://doi.org/10.1021/acssensors.7b00620
https://doi.org/10.1016/j.envpol.2016.12.045
https://www.ncbi.nlm.nih.gov/pubmed/28162801
https://doi.org/10.3390/s17071520
https://www.ncbi.nlm.nih.gov/pubmed/28657595
https://doi.org/10.3390/s17112478
https://doi.org/10.1016/j.envint.2014.11.019
https://www.ncbi.nlm.nih.gov/pubmed/25483836
https://doi.org/10.1016/j.scitotenv.2016.04.032
https://doi.org/10.14288/1.0132725
https://doi.org/10.1016/j.scitotenv.2020.138385
https://www.ncbi.nlm.nih.gov/pubmed/32498203
https://doi.org/10.3390/ijerph17113995
https://www.ncbi.nlm.nih.gov/pubmed/32512865
https://doi.org/10.1109/JSEN.2014.2359832
https://doi.org/10.3390/s17040828
https://www.ncbi.nlm.nih.gov/pubmed/28398225
https://doi.org/10.1007/s10776-016-0299-y
https://doi.org/10.3390/s16030403
https://www.ncbi.nlm.nih.gov/pubmed/26999160
https://doi.org/10.3389/fbuil.2018.00028
https://doi.org/10.1016/j.jobe.2018.05.014
https://doi.org/10.1109/JIOT.2018.2878528
https://doi.org/10.1016/j.jclepro.2021.127846


Sensors 2024, 24, 2176 36 of 36

44. Suriano, D.; Penza, M. Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through
Different Calibration Models. Atmosphere 2022, 13, 567. [CrossRef]

45. Tondini, S.; Scilla, R.; Casari, P. Minimized training of machine learning-based calibration methods for low-cost O3 sensors. IEEE
Sens. J. 2023, 24, 3973–3987. [CrossRef]

46. Tondini, S.; Tritini, S.; Amatori, M.; Croce, S.; Seppi, S.; Monsorno, R. LoRa-based Wireless Sensor Networks for Urban Scenarios
Using an Open-source Approach. Sens. Transducers 2019, 238, 64–71.

47. Croce, S.; Tondini, S. Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary
Study in the City of Bolzano (Italy). Smart Cities 2022, 5, 54–70. [CrossRef]

48. Croce, S.; Tondini, S. Urban Microclimate Monitoring and Modelling through an Open-Source Distributed Network of Wireless
Low-Cost Sensors and Numerical Simulations. Eng. Proc. 2020, 2, 18. [CrossRef]

49. LoRaWAN Specifications. 2015. Available online: https://lora-alliance.org/wp-content/uploads/2020/11/2015_-_lorawan_
specification_1r0_611_1.pdf (accessed on 9 March 2024).

50. Purswell, J.L.; Davis, J.D. Construction of a low-cost black globe thermometer. Appl. Eng. Agric. 2008, 24, 379–381. [CrossRef]
51. Humphreys, M.A. the optimum diameter for a globe thermometer for use indoors. Ann. Occup. Hyg. 1977, 20, 135–140. [CrossRef]
52. Majewski, J. Low humidity characteristics of polymer-based capacitive humidity sensors. Metrol. Meas. Syst. 2017, 24, 607–616.

[CrossRef]
53. Matko, V.; Donlagic, D. Sensor for high-air-humidity measurement. IEEE Trans. Instrum. Meas. 1996, 45, 561–563. [CrossRef]
54. Olegario, J.M.; Regmi, S.; Sousan, S. Evaluation of Low-Cost Optical Particle Counters for Agricultural Exposure Measurements.

Appl. Eng. Agric. 2021, 37, 113–122. [CrossRef]
55. Czernicki, P.; Kallmert, M. Evaluation of a Heated Inlet to Reduce Humidity Induced Error in Low-Cost Particulate Matter.

Master Degree, Lund University, Department of Design Sciences, Faculty of Engineering LTH, Lund, Sweden, 2019.
56. Pang, X.; Nan, H.; Zhong, J.; Ye, D.; Shaw, M.D.; Lewis, A.C. Low-cost photoionization sensors as detectors in GC × GC systems

designed for ambient VOC measurements. Sci. Total. Environ. 2019, 664, 771–779. [CrossRef]
57. Tondini, S. Harmful pollutants and microclimatic parameters from autonomous low-cost sensors deployed in the city center of

Bolzano, Italy. Eurac Res. 2022. [CrossRef]
58. Yasuda, T.; Yonemura, S.; Tani, A. Comparison of the characteristics of small commercial NDIR CO2 sensor models and

development of a portable CO2 measurement device. Sensors 2012, 12, 3641–3655. [CrossRef]
59. Sun, L.; Wong, K.C.; Wei, P.; Ye, S.; Huang, H.; Yang, F.; Westerdahl, D.; Louie, P.K.; Luk, C.W.; Ning, Z.; et al. Development and

Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring. Sensors 2016,
16, 211. [CrossRef]

60. Lewis, A.C.; Lee, J.D.; Edwards, P.M.; Shaw, M.D.; Evans, M.J.; Moller, S.J.; Smith, K.R.; Buckley, J.W.; Ellis, M.; Gillot, S.R.; et al.
Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discuss. 2016, 189, 85–103. [CrossRef]

61. Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor
platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [CrossRef]

62. Mead, M.; Popoola, O.; Stewart, G.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.; McLeod, M.; Hodgson, T.; Dicks, J.; et al. The
use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70,
186–203. [CrossRef]

63. Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the alphasense optical particle counter (OPC-N2) and the grimm
portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016, 50, 1352–1365. [CrossRef]

64. Kaur, K.; Kelly, K.E. Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events
in the Salt Lake Valley, Utah. Atmos. Meas. Technol. 2023, 16, 2455–2470. [CrossRef]

65. Rahman, M.M. Efficient formaldehyde sensor development based on Cu-codoped ZnO nanomaterial by an electrochemical
approach. Sensors Actuators B Chem. 2020, 305, 127541. [CrossRef]

66. Zhang, S.; Lei, T.; Li, D.; Zhang, G.; Xie, C. UV light activation of TiO2 for sensing formaldehyde: How to be sensitive, recovering
fast, and humidity less sensitive. Sensors Actuators B Chem. 2014, 202, 964–970. [CrossRef]

67. 55-2010; Thermal Environmental Conditions for Human Occupancy. Association of the Heating, Refrigeration and Air-
Conditioning En-gineers. ANSI/ASHRAE: Peachtree Corners, GA, USA, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/atmos13040567
https://doi.org/10.1109/JSEN.2023.3339202
https://doi.org/10.3390/smartcities5010004
https://doi.org/10.3390/ecsa-7-08270
https://lora-alliance.org/wp-content/uploads/2020/11/2015_-_lorawan_specification_1r0_611_1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/2015_-_lorawan_specification_1r0_611_1.pdf
https://doi.org/10.13031/2013.24500
https://doi.org/10.1093/annhyg/20.2.135
https://doi.org/10.1515/mms-2017-0048
https://doi.org/10.1109/19.492787
https://doi.org/10.13031/aea.14091
https://doi.org/10.1016/j.scitotenv.2019.01.348
https://doi.org/10.48784/MYPZ-EV45
https://doi.org/10.3390/s120303641
https://doi.org/10.3390/s16020211
https://doi.org/10.1039/C5FD00201J
https://doi.org/10.1016/j.envint.2016.12.007
https://doi.org/10.1016/j.atmosenv.2012.11.060
https://doi.org/10.1080/02786826.2016.1232859
https://doi.org/10.5194/amt-16-2455-2023
https://doi.org/10.1016/j.snb.2019.127541
https://doi.org/10.1016/j.snb.2014.06.063

	Introduction 
	Literature on LCSs 
	Aim of the Study 

	Materials and Methods 
	Description of the EQ-OX System 
	Case, Main Hardware, and Firmware 
	Data Transmission 
	Power Requirements 

	Sensors and Experimental Conditions 
	Sensors and Reference Instruments 
	Experimental Conditions 

	Correction Algorithm 

	Results 
	Discussion 
	LCSs’ Performance Assessment 
	Field Application 
	EQ-OX System Costs 
	Limitations and Perspectives 

	Conclusions 
	Appendix A
	References

