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Abstract: The building envelope serves as a barrier against climatic conditions and as insulation
to prevent energy waste within buildings. As global energy shortages become more pressing, the
requirements for building envelopes are becoming increasingly stringent. Among the available
technologies, phase change materials (PCMs) stand out for their high latent thermal energy storage
and temperature stabilization capabilities. This paper reviews the recent advancements in PCM
technology for building envelopes, starting with an overview of organic, inorganic, and eutectic
PCMs, along with their respective advantages and disadvantages. The paper explores various
incorporation methods such as shape stabilization, macroencapsulation, micro/nanoencapsulation,
and solid–solid transition techniques. The integration of PCMs enhances thermal inertia, reduces
thermal fluctuations, and delays heat peaks, presenting several multifunctional benefits. However,
challenges such as fire hazards, potential toxicity, pollution, reduced mechanical performance, and
higher initial costs persist. In light of these challenges, criteria for PCM integration in building
applications are introduced. Additionally, the paper reviews recent hybrid technologies that combine
PCMs with other novel technologies for building envelopes, including radiant temperature regulation
systems, thermochromic windows, passive radiative cooling coatings, and others. It is shown that
these PCM-integrated hybrid technologies significantly improve energy savings and indoor comfort.
PCMs offer substantial potential for modern green building strategies and have further applications
in other building contexts. Finally, the paper provides future prospects for studies in this field, aiming
towards a green and energy-saving future.

Keywords: phase change material; building envelope; indoor comfort; zero carbon building

1. Introduction

The evolution of building envelopes has closely paralleled the progression of human
civilization, historically functioning as protective barriers against harsh climatic conditions.
The energy crisis of 1973 acted as a catalyst, significantly amplifying the focus on research
related to building envelopes, which are responsible for approximately 36% of energy
consumption in human activities [1]. The concept of the “building envelope” encompasses a
diverse range of components, including opaque envelopes, structural materials, insulation,
and glazing [2,3]. Numerous studies have investigated various materials suitable for
building envelopes across different climatic conditions, extending from traditional materials
like wood and earth [4–6] to cutting-edge hybrid polymers that boast enhanced properties
such as superior thermal insulation, radiative sky cooling, fire resistance, and radiant
cooling capabilities [7–10].

Within this spectrum, phase change materials (PCMs) have been recognized as par-
ticularly promising for their passive thermal regulation properties when integrated into
building envelopes, owing to their latent thermal energy storage (LTES) capabilities. Unlike
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conventional sensible heat storage methods, PCMs can maintain a relatively stable tempera-
ture range while they absorb and release heat during their phase transitions, typically from
solid to liquid, as illustrated in Figure 1. This distinctive capability enables PCMs to act as
buffers to mitigate temperature fluctuations or as thermal energy reservoirs that can store
surplus heat or cooling energy for subsequent use. Such dynamic processes significantly
enhance a building’s thermal inertia, thereby reducing the reliance on heating and cooling
systems and consequently lowering the building’s carbon footprint. Recent literature has
extensively discussed these aspects [11–15]. For instance, Rathore et al. [16] provided a
comprehensive summary concerning the integration techniques, performance evaluations,
and underlying principles of PCMs in building materials. Li et al. [17] explored the thermal
and optical performance of PCMs specifically for glazing applications, acknowledging
the substantial potential for energy savings but also noting challenges such as diminished
heat gain in colder regions, scattering effects caused by the porous structures of solid-state
PCMs, and the ongoing need for refined models to simulate dynamic processes. Al-Yasiri
and Szabó [18] highlighted a research gap in PCM applications for extreme climates and
emphasized the necessity for extended durability testing. They also noted that while
the low thermal conductivity of PCMs provides excellent insulation, it simultaneously
impedes the efficiency of energy charge–discharge cycles, impacting the overall energy
storage capacity.

Despite these challenges, the domain of PCMs in building envelopes is rapidly ex-
panding, with innovative technologies emerging at an unprecedented rate. For example,
the transformation of PCMs from solid–liquid to solid–solid states through chemical mod-
ifications is being investigated as a viable approach to stabilize their shape and prevent
leakage [19]. Moreover, the integration of PCMs with other functional materials such as
radiative cooling agents, photothermal, and photocatalytic materials is enhancing the mul-
tifunctional capabilities of PCM composites beyond simple thermal energy storage [20–23].
In light of these advancements, it is essential to continually update and disseminate the
latest research findings to further promote the application of PCMs in building envelopes,
steering toward a zero-carbon future.

Figure 1. Temperature–enthalpy diagram of a PCM.

This paper begins by introducing different types of PCMs, emphasizing their distinct
properties and functionalities. Special attention is given to recent advances in eutectic
alloys with room temperature melting points, which are often overlooked in many PCM
review articles. Examples of these PCMs are discussed, particularly those with appropriate
phase change temperatures for building applications. We also explore PCM incorporation
methods and anti-leakage techniques, including solid–solid PCMs (SSPCMs) that enhance
the durability and reliability of PCMs in building contexts. Unlike existing review works
on traditional building envelopes, this paper focuses on the innovative integration of PCMs
with other energy-saving technologies such as radiant temperature control and radiative
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cooling. It addresses both successes and challenges, offering insights into future research
directions. The review aims to present a comprehensive view of the state of the art in PCM
technology, underscoring its potential to significantly impact energy conservation strategies
in multifunctional building envelopes.

2. Features and Classification of PCMs

PCMs used in building envelopes must satisfy a range of critical criteria, including
an appropriate phase-transition range, high latent heat capacity, efficient heat transfer
capabilities, stable phase equilibrium, high density, minimal volume change during phase
changes, low vapor pressure to circumvent containment issues, resistance to supercooling,
a rapid crystallization rate, long-term chemical stability, compatibility with construction
materials, non-toxicity, safety from fire hazards, and economic viability. The energy storage
capacity of a PCM is determined by a combination of its sensible and latent thermal
energy storage capacities. However, despite their potential, PCMs inherently exhibit some
limitations such as tendencies toward supercooling, phase separation, leakage, and low
thermal conductivity. These challenges necessitate careful selection and engineering to
optimize the performance of PCMs in practical applications.

Assuming the heat capacity Cp is constant, the sensible heat Qs of an ideal PCM with
mass m is given by

Qs = mCp(T2 − T1) (1)

where T1 and T2 are the start and end temperatures during the heat storage process.
In contrast, when a phase change is completed, the total stored thermal energy by the PCM
is calculated by

Q = mCp(T2 − T1) + H (2)

where H signifies the latent heat of the PCM. It is important to note that most commer-
cialized PCMs do not exhibit a fixed melting point as one might assume. Instead, due to
material impurities, they typically display a melting range as indicated in Figure 1 [24–26].
Figure 2 illustrates different types of differential scanning calorimetry (DSC) results, which
reveal various melting patterns. For instance, paraffin wax is a mixture of n-alkanes, and the
presence of different types of alkanes and variations in the lengths of molecular chains not
only results in a non-fixed melting temperature but also contributes to solid–solid phase
changes due to alterations in crystalline structures [27,28].

Figure 2. DSC patterns of different PCMs with (a) single-phase change process; (b) more than one
phase change process; (c) temperature-dependent heat capacity; (d) merged phase change processes.
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PCMs can be categorized based on their chemical composition into three types, organic,
inorganic, and eutectic, each demonstrating unique properties that make them suitable
for integration into building envelopes. Each type possesses advantages over others
in different aspects as shown in Figure 3. Organic PCMs are particularly valued for
their congruent melting behavior, minimal supercooling, excellent compatibility with
construction materials, and stability, making them a preferred choice for many applications.
In contrast, inorganic PCMs are chosen for their high latent heat capacity and higher
thermal conductivity, although they pose challenges such as phase separation and potential
corrosion, which can limit their usability. Eutectic PCMs, which are combinations of
different types of PCMs, are engineered to combine the advantageous properties of the
composed materials. This hybrid approach allows for the customization of melting points
and latent heat capacities to meet specific requirements, thus broadening their applicability
in diverse scenarios [15,29].

Figure 3. Merits and demerits of different types of PCMs. Figures reprinted from [30].

2.1. Organic PCMs

Organic PCMs are generally divided into two main categories: paraffins and non-
paraffins. Paraffins, which are mixtures of n-alkanes, exhibit a range of melting points
that increase with the length of the molecule’s chain, making them highly versatile for use
in building envelopes [31]. They are characterized by multiple allotropic forms, which
vary in physical characteristics and crystal structures [32]. These allotropes can transition
between states in response to temperature changes, with the conversion being entirely
reversible. The advantages of using paraffins for heat storage are manifold: they offer a
high latent heat of fusion, minimal supercooling, low vapor pressure in their liquid state,
chemical inertness, long-term stability, self-nucleating properties, and an absence of phase
segregation [33,34]. Additionally, as byproducts of the oil industry, paraffins are readily
available at reasonable costs, enhancing their economic viability [35,36].

Non-paraffins encompass a diverse group that includes bio-based PCMs (BPCMs)
such as fatty acids and alcohols, and polymer PCMs represented by polyethylene glycol
(PEG). BPCMs are typically derived from bioproducts like plant and animal fats [37,38].
They are characterized by their recyclability, degradability, and lower melting points,
making them more eco-friendly and suitable for low-temperature applications [39,40].
Furthermore, BPCMs exhibit high surface tension in their liquid state, which helps confine
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the material within the host matrix, thereby addressing leakage concerns [41]. PEG, on the
other hand, offers benefits including ease of synthesis, non-toxicity, biocompatibility, low
cost, flexibility, compatibility with various additives, and the potential for environmentally
friendly fabrication processes [42].

Despite their numerous advantages, organic PCMs commonly suffer from low ther-
mal conductivity, necessitating the use of conductivity-enhancing techniques for effective
application. Additionally, the potential fire hazards associated with organic PCMs should
not be underestimated. Recent studies, such as those by Weng et al. [43], have explored
the integration of fire retardants to mitigate the flammability risks associated with these
materials. The ongoing development and refinement of organic PCMs for use in building
envelopes continue to promise further optimizations in energy efficiency and sustainability
within the construction sector. Table 1 provides the thermophysical properties (melting
point/range Tm, average thermal conductivity k, and latent heat H) of some representative
organic PCMs applicable to building envelopes.

Table 1. Thermophysical properties of some organic PCM candidates for building envelopes.

PCM Tm (◦C) H (kJ/kg) k (W/(m·K))

n-Octadecane [44] 24.90 204.91 0.192
Tetradecane [45] 5.8 227 -
Pentadecane [45] 9.9 206 -
Hexadecane [45] 18.1 236 -
n-Eicosane [46] 36.58 248.5 0.25
Paraffin [47] 21.7–22.7 161.6 0.21
Paraffin [25] 27–29 245 -
Paraffin [48] 27–33 165 0.13
Paraffin [49] 44 174.12 -
Paraffin [50] 70 173.03 0.197
Lauric acid [51] 43.93 178.11 -
Myristic acid [51] 54.28 191.27 -
Palmitic acid [51] 62.73 206.16 -
Stearic acid [51] 69.62 217.62 -
PEG [52] 21.3–31.5 187.03 -
PEG [53] 18.51 118.22 -
Lauryl alcohol [54] 24 217 0.221
Oleic acid [55] 5–7 140 -
Butyl stearate [55] 21 88 -
Isopropyl palmitate [55] 11 117 -

2.2. Inorganic PCMs

Inorganic PCMs include salt hydrates, molten salts, and metallic PCMs (encompassing
metals and eutectic alloys). These inorganic PCMs generally exhibit higher energy storage
capacities and superior thermal conductivities compared to their organic counterparts [56].
Notably, the melting points of some inorganic PCMs, particularly molten salts, often exceed
200 ◦C, which makes them less suitable for building envelope applications due to the
high operational temperatures required. Table 2 provides the thermophysical properties of
some inorganic PCM candidates. Decades ago, metallic PCMs were often excluded from
building applications due to their excessively high melting temperatures [57]. However,
advancements in materials science have facilitated the discovery of low-temperature metals
and alloys, sparking renewed interest in these materials for their significantly higher
thermal conductivities compared to other PCM types.

Salt hydrates, composed of ionic compounds incorporating water molecules within
their crystal lattice, offer high energy storage density at a relatively low cost [58]. They are
often preferred over organic PCMs due to their non-flammable and odorless properties,
which enhance safety and comfort in inhabited spaces. Nevertheless, salt hydrates face
several challenges that limit their broader application. One major issue is incongruent
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melting, where the solid phase, typically a lower hydrate of the same salt, separates and
settles at the bottom of the container, leading to chemical instability and irreversible loss of
thermal storage capability [32]. Additionally, supercooling in salt hydrates can delay heat
release, which is a disadvantage in many building applications despite its potential benefits
for long-term energy storage [59,60]. To address these issues, the addition of nucleating and
thickening agents is a common practice [61–63]. The corrosive nature of salt hydrates also
poses significant challenges as they can degrade metals, especially when encapsulated in
metal containers. Although the thermal conductivity of salt hydrates is higher than that of
organic PCMs—for example, the thermal conductivity of solid CaCl2·6H2O is 1.08 W/(m·K),
which is four times higher than that of OP42E paraffin [64]—the overall thermal energy
storage efficiency remains low, necessitating further heat transfer enhancement techniques.

Metallic PCMs for building envelopes, including low melting point metals and metal
eutectics, are increasingly considered for efficient thermal energy storage due to their
excellent thermal conductivity. This intrinsic property eliminates the need for additional
heat transfer enhancement, making metallic PCMs highly efficient. They also tend to have
higher overall energy densities and offer stability advantages compared to salt hydrates [65].
However, metallic PCMs face challenges such as containment issues and high corrosivity in
their liquid state, which can compromise safety and reduce system longevity [66]. Despite
these challenges, ongoing developments in metallic PCMs hold promise for advancing
high-temperature energy storage solutions, which are crucial for the next generation of
energy-efficient buildings.

Table 2. Thermophysical properties of some inorganic PCM candidates for building envelopes.

PCM Classification Tm (◦C) H (kJ/kg) k (W/(m·K))

Na2SO4·10H2O [67] Salt hydrate 32.24 139.9 0.34
CaCl2·6H2O [68] Salt hydrate 29.6 212 0.82
Na2HPO4·12H2O [69] Salt hydrate 35.1 209.5 1.25
CH3COONa·3H2O [70] Salt hydrate 58.3 286.3 -
Na2CO3·10H2O [71] Salt hydrate 33 247 0.6
FeCl3·6H2O [71] Salt hydrate 37 223 -
Mg(NO3)2·6H2O [72] Salt hydrate 91.5 146 0.4
Zn(NO3)2·6H2O [73] Salt hydrate 34.6 140 -
Gallium [74] Metal 29.78 80.16 32
Bi-Sn-In [75] Alloy 60.9 29.18 16.4
Bi-21In-18Pb-12Sn [76] Alloy 56.83 28.98 32.2∼10.6
Ga-13.5Sn [76] Alloy 20 78.29 30
Bi–Cd–Sn–Pb [77] Alloy 70 32.9 18
In51Bi32.5Sn16.5 [78] Alloy 61.53 28.98 -
In-Sn-Bi [79] Alloy 54.9 25 16.85
50Bi/25Pb/13Sn/12Cd [80] Alloy 73 30.6 23

2.3. Eutectic PCMs

Eutectic PCMs are homogeneous mixtures composed of two or more different PCMs,
which can be combinations of organic–organic, inorganic–inorganic, or organic–inorganic
materials. The primary objective in synthesizing eutectic PCMs is to moderate their melting
temperatures, typically achieving a melting point that is lower than that of each individual
component, thereby aligning with desired operational temperatures [81]. The melting point
of eutectic PCMs can be determined using the Schroeder equation by analyzing the phase
diagram of the binary eutectic system [82]. As illustrated in Figure 4a, the phase diagram
features two solubility lines, labeled “a” and “a′”, which converge at an equilibrium state
known as the eutectic point, denoted as X1,e. This point marks the highest degree of
melting point depression achievable in the system, allowing for the precise quantification
of the melting points of eutectic PCMs by understanding the thermal behavior of the
constituent PCMs.
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However, one issue with eutectic PCMs is the presence of impurities, which can
introduce thermal instability, often leading to latent heat loss after multiple cycles of
charging and discharging [83]. Despite this challenge, recent advancements in eutectic
PCM technology have significantly minimized these issues [84–86]. Another concern with
eutectic PCMs, particularly those containing an inorganic component, is the problem of
supercooling as shown in Figure 4b [87]. Ideally, a eutectic PCM should not suffer from
phase separation if the composition is maintained at the equilibrium point indicated on the
phase diagram. However, if one of the components undergoes supercooling, it disrupts this
phase equilibrium, leading to phase separation and a corresponding loss in latent heat [88].
Table 3 displays the thermophysical properties of some recently developed eutectic PCMs
with phase change temperatures suitable for building envelope applications.

Figure 4. (a) Phase diagram of a simple binary eutectic system, reprinted from [89]. (b) Different
thermal behaviors of PCMs suffering from supercooling, reprinted from [90].
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Table 3. Thermophysical properties of some recently developed eutectic PCMs.

Classification Composition (in wt%) Tm(◦C) H (kJ/kg) k (W/(m·K))

Inorganic–
organic [91] CH3COONa·3H2O, CH4N2O, 6:4 31.4 205.3 -

Binary organic [92] Lauryl alcohol, stearyl alcohol, 9:1 22.93 205.79 0.18
Binary organic [93] Lauric acid, stearyl alcohol, 7:3 39.87 186.94 -
Binary inorganic [94] CaCl2·6H2O, Na2HPO4·12H2O, 78.3:21.7 22.6 143.6 -
Ternary inorganic [94] Na2SO4·10H2O, Na2CO3·10H2O, Na2HPO4·12H2O, 34.8:46.2:19 20.2 207.65 -
Binary organic [95] Palmitic acid, stearic acid, 61:39 54.8 223.6 0.8602
Binary inorganic [96] Na2SO4·10H2O, Na2HPO4·12H2O, 62:38 27.1 202.4 0.464
Ternary organic [97] Adipic acid, sebacic acid, stearic acid, - 61.7 193.3 -
Binary organic [98] Paraffin, stearic acid, 45:35 56.2 192.5 0.368
Binary organic [98] Palmitic acid, stearic acid, 32:68 55.8 213.3 0.323
Binary organic [98] Palmitic acid, myristic acid, 14:86 51.3 225.8 0.285
Binary organic [99] Decanoic acid, PEG, 1:1 22.9 173.9 0.2025

3. Incorporation Methods

As PCMs undergo state transitions between solid and liquid during phase change
processes, several methods of incorporation are required to prevent the leakage of liquid
PCMs in applications. Generally, there are four types of incorporation methods: the first
involves using highly porous materials to contain the liquid PCM, which is commonly
referred to as shape stabilization or form stabilization [100,101]. The second method
involves encapsulating PCMs within a macroscale container [102,103], while the third
method focuses on constructing core–shell structures to create micro/nanoencapsulated
PCMs [104]. Finally, the fourth method converts solid–liquid PCMs into SSPCMs through
chemical linking [105]. Each of these methods aims to enhance the application feasibility of
PCMs by addressing the challenges associated with the liquid phase of the material.

3.1. Shape-Stabilized PCMs

PCMs can be incorporated into porous materials such as graphene [106], a matrix of
carbon nanotubes [107], and expanded graphite [54]. These materials provide space for the
volume change of PCMs, and the liquid PCMs are held within the porous structure due to
the combined effects of capillary force, surface tension, and van der Waals forces [46,108].
Not only do these porous materials serve as supporting matrices for PCMs, but they also
modulate the thermal conductivities of the PCMs to either enhance heat storage efficiency
or improve thermal insulation capabilities [109,110]. The fabrication process for these
composites is generally straightforward [111], involving the mixing of the substrate foam
material and PCM at a temperature above the PCM melting point, followed by cooling
and shaping in molds; vacuum impregnation may be employed to achieve a more intimate
combination, allowing the PCM to thoroughly impregnate the porous structure and form a
shape-stabilized composite.

Yang et al. [112] prepared a shape-stabilizing PCM by incorporating lauryl alco-
hol/stearic acid eutectic PCM and Al2O3 nanoparticles as thermal conductivity enhancers
into ceramsite, creating a ceramsite-based shape-stabilized PCM as shown in Figure 5a.
It was found that this shape-stabilized PCM effectively prevents leakage with a melting
point of 22.5 ◦C, and the enthalpy of the PCM composite is 133.4 kJ/kg. By integrating
the PCM composite into concrete blocks, satisfying mechanical performance was achieved,
and temperatures on both the hot side and cold side of the PCM-integrated building enve-
lope were reduced as shown in Figure 5b,c. Kumar et al. [113] experimentally studied the
effectiveness of incorporating a lauric acid/zeolite/graphite PCM composite into gypsum
plaster, observing maximum temperature reductions of 13.86% and 7.78% in peak indoor
surface temperatures at the roof and south wall, respectively. Atinafu et al. [114] studied
the performance of four different carbon-based materials—biochar, activated carbon, car-
bon nanotubes, and expanded graphite—on n-heptadecane. It was found that expanded
graphite has the highest PCM loading ratio of 94.5%, a result attributed to the intermolecu-
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lar interactions between the PCM and the carbon materials, including hydrogen bonding,
pore characteristics, and surface functionality.

Figure 5. (a) The ceramsite-based shape-stabilized PCM. (b) Concrete incorporated with different
mass fractions of shape-stabilized PCM. (c) Temperature variation on the hot and cold sides of a
10 cm × 10 cm × 3 cm thick concrete panel integrated with 15 wt% PCM compared to a normal
concrete panel. Figures reprinted from [112].

3.2. Macroencapsulated PCMs

PCMs can be encapsulated within macroscale containers, allowing these macroen-
capsulated PCMs to be further integrated with building materials such as bricks and
concrete as illustrated in Figure 6. Compared to other types of PCM incorporation meth-
ods, macroencapsulation offers superior mechanical strength and a higher PCM loading
ratio. Moreover, because the encapsulation isolates the PCM from the environment, it also
enhances the stability of the PCM itself. This method not only ensures structural integrity
but also optimizes the thermal performance of the building materials by incorporating the
thermal management capabilities of PCMs [115,116].

Figure 6. PCM macroencapsulation methods for building envelopes. Figure reprinted from [117].
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Abass and Muthulingam [118] developed a reinforced concrete roof integrated with
macroencapsulated PCMs to enhance passive cooling in buildings. Their findings indicate
that the PCM-integrated roof slab significantly improves thermal performance by reducing
interior temperatures by up to 7.2 °C during sunny hours, decreasing heat transfer into the
building by up to 60.6%, and reducing the thermal load by up to 54%. This demonstrates
the effectiveness of macroencapsulation in mitigating heat ingress, particularly during
peak solar radiation periods. Rida and Hoffmann [119] investigated the impact of the
exposed surface area of a macroencapsulated PCM (coconut oil) panel when applied to
ceilings. They discovered that increasing the exposed surface area by 50% reduced the time
needed for the PCM to melt completely by 20%, highlighting the importance of surface
area in the thermal performance of PCM applications. Hu et al. [120] developed a casing
pipe wall system with macroencapsulated PCM, characterized by enhanced anti-leakage
properties, mechanical strength, and cost effectiveness. This innovative design involves
filling the inner and outer pipes with PCMs of different melting points, allowing the wall to
provide both passive heating and cooling. This dual functionality is particularly beneficial
in regions of China that experience both hot summers and cold winters. Under optimal
operating conditions, the wall surface temperatures were observed to be approximately
20.5 °C in summer and 26.8 °C in winter, demonstrating substantial improvements in
maintaining comfortable indoor temperatures throughout the year.

3.3. Micro/Nanoencapsulated PCMs

Compared to macroencapsulation, PCMs can also be encapsulated at the microscale
(diameter above 1 mm) or nanoscale (diameter less than 1 mm) by constructing a core–shell
structure. The smaller size of micro/nanoencapsulated PCMs facilitates their integration
into various building materials. These micro/nanoencapsulated PCMs offer a high surface
area for heat transfer, which is advantageous for thermal management. However, their
thermal conductivity is not particularly remarkable due to limitations in enhancing heat
transfer at such small scales [104].

The encapsulation also provides insulation from the surrounding environment, en-
abling high thermal stability. Al-Absi et al. [121] compared the thermal performance of
microencapsulated PCM-integrated cement render (CR) and foamed concrete (FC) on build-
ing walls with conventional CR and FC as shown in Figure 7a. The study demonstrated
that PCM panels can significantly reduce temperature fluctuations over three heating and
cooling cycles. The integration of PCMs results in a lower temperature profile for PCM-
integrated walls during the heating period and higher profiles during the cooling period,
attributed to the phase change processes of PCMs. During the heating period, the use of
PCM panels can lead to a maximum temperature reduction of 4.8 °C for the external surface
and 7.35 °C for the internal surface. Additionally, the peaks of internal surface temperature
can be reduced by up to 3.95 °C. The micro/nanoencapsulation of PCMs also provides a
protective layer that enhances the stability of PCMs. Maleki et al. [122] developed a plaster
wallboard integrated with nanoencapsulated PCM as shown in Figure 7b. It was observed
that the thermal and mechanical performance of the nanoencapsulated PCM remained sta-
ble even after 500 thermal cycles. Cabeza et al. [123] studied the long-term performance of
a concrete wall integrated with microencapsulated PCMs. Their findings revealed that after
10 years of operation, the PCM-integrated wall continued to effectively reduce temperature
fluctuations, with no significant degradation of the PCMs noted. Although there was a
slight reduction in the mechanical performance of the wall, it still functioned comparably
to its original performance, underscoring the potential of microencapsulated PCMs in
sustainable building practices that require long-term thermal management solutions.
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Figure 7. (a) Exterior surface temperature and interior surface temperature of a building wall
integrated with/without PCM panels in three heating and cooling cycles. Figure reprinted from [121].
(b) SEM image (top) and TEM image (bottom) of the nanoencapsulated PCM. Figure reprinted
from [122].

3.4. SSPCMs

SSPCMs remain in the solid state during their phase change processes. There are two
types of SSPCMs. The first type consists of natural SSPCMs, which undergo a phase change
by altering their crystalline structure, such as certain salt hydrates and paraffin [64,124–126].
The second type comprises chemically modified SSPCMs derived from conventional solid–
liquid PCMs to promote a solid–solid phase transition. Unlike some PCMs that transition
between crystalline structures, such as paraffin [127], chemically modified SSPCMs typically
transition from a crystalline structure to an amorphous phase [19]. This transformation is
primarily observed in polymer-based PCMs with hydroxyl-terminated structures.

PEG is a commonly studied base material for SSPCMs. A distinctive feature of PEG
is its repeating ethyl–ether segments, which facilitate grafting or crosslinking with other
polymers, thereby enhancing its structural integrity and functional adaptability [128].
Despite these benefits, the chemical stabilization process can reduce the latent heat capacity
and alter the melting point [129]. Additionally, the absence of natural convection in
SSPCMs necessitates the use of heat transfer enhancement techniques such as fins and metal
foams [130–133]. Nevertheless, SSPCMs substantially mitigate leakage issues, presenting
a significant advantage, particularly in applications where the containment of the PCM
is critical.

Gao et al. [134] explored the application of PEG-based SSPCMs in building windows.
They developed a novel, translucent PCM window that maintained consistent optical
properties. Implementing a 3 mm thick layer of this PCM enabled energy savings of up
to 9.4% for heating, 6.7% for ventilation, and 3.2% for air conditioning across the entire
building. This demonstrates the potential of SSPCMs in reducing energy consumption in
building applications. Harlé [135] investigated the use of SSPCM integrated with plaster
to create a composite material for building applications. The study found that while the
addition of PCM reduced the mechanical performance of the plaster, a concentration of
20 wt% PCM achieved an optimal balance between mechanical strength and thermal perfor-
mance. This composite material exhibited satisfactory thermal regulation capabilities and
stability, indicating its viability for enhancing building energy efficiency while maintaining
structural integrity.



Sustainability 2024, 16, 6482 12 of 27

4. Criteria for PCM Integration in Building Applications

For the incorporation of PCMs in buildings, various issues need to be considered
during the design process. For instance, the cost of the building increases when using such
materials to replace conventional insulation materials. Moreover, integrating PCMs into
building materials in any form can reduce their mechanical strength. This section discusses
the criteria for PCM incorporation in buildings, providing a thorough evaluation of the
main considerations for PCM selection and design.

4.1. Thermophysical Properties

The thermophysical properties that need to be considered for PCM selection in build-
ing applications mainly include latent heat, thermal conductivity, and melting point (or
range). For each of these properties, there is no single criterion in the design principles that
definitively states whether higher values are better. For example, some studies suggest that
an ideal PCM for buildings should have high latent heat (or high energy storage density
for metallic PCMs). While this can be true for applications requiring high energy storage
capacity, it is not universally applicable. Chen et al. [136] showed that for PCM-integrated
building envelopes in summer, using a PCM with higher latent heat can save more energy
under high cooling energy consumption. However, for low cooling energy use, a higher la-
tent heat PCM makes the stored heat more difficult to dissipate, leading to more significant
energy waste.

Another factor to consider is thermal conductivity. In most cases, the application of
PCMs in buildings requires some heat transfer enhancement techniques to ensure that the
PCM can quickly respond to temperature changes, thereby increasing its energy storage
efficiency [137,138]. However, the low thermal conductivity of PCMs (such as organic
PCMs and salt hydrates) can be beneficial as a thermal insulation material [139].

The melting point of PCMs should be selected according to their applications. Gen-
erally, for heat supply applications, the melting point of PCM should lie between 29 and
60 °C; for building envelope applications, it should be 22–28 °C; and for refrigeration
applications, it should be below 21 °C [140]. Overall, the selection of PCMs in terms of their
thermophysical properties, amount of use, and incorporation position should be optimized
based on the local climate conditions and the design of the buildings [141–143].

4.2. Chemical and Thermal Stability

Buildings are long-term investments that stand for decades, requiring PCMs with
good stability. This means that PCMs should maintain their thermal performance after a
large amount of cycles of charging and discharging. As a result, the PCM should retain
its chemical composition and not react by itself during heating and cooling. Additionally,
PCMs should not react with encapsulating materials and other surrounding building ma-
terials. Such issues are usually observed in inorganic salt hydrates and metallic PCMs.
Studies have reported that inorganic PCM-integrated concrete can lead to corrosion prob-
lems with steel rebars [144,145]. This issue is typically solved by building a barrier between
the corrosive PCM and the materials prone to corrosion, either through encapsulation or
coating [146]. Furthermore, PCMs should exhibit minimal supercooling effects, which are
usually observed in micro/nanoencapsulated PCMs and inorganic PCMs as discussed in
Section 2. The degree of supercooling can be mitigated by increasing the roughness of the
encapsulation or adding additives as nucleation sites for solidification [147].

To date, many PCMs with great stability and reliability have been prepared in recent
studies. Emeema et al. [148] prepared paraffin/carbon quantum dot (CQD) composites.
Thermogravimetric analysis (TGA) results indicated that adding CQD to paraffin raised the
onset degradation temperature of the composites to as high as 297 °C from 269 °C, implying
a longer lifespan of the composite. In a year-long test with 300 charging and discharging
cycles, it was shown that the latent heat of the paraffin/QOD composite decreased slightly
by 0.6%, demonstrating great potential for long-term operations.



Sustainability 2024, 16, 6482 13 of 27

4.3. Safety Issues

Despite their non-corrosive, low-cost, chemically stable, and non-supercooling ad-
vantages, fire safety is a crucial concern for organic PCMs in building envelopes, which
must be considered in the design of buildings. Mclaggan et al. [149] showed that different
applications of PCMs in buildings exhibit different levels of fire risks. When integrating
PCMs in wall linings, fire risks can be quantified and mitigated by designers through
proper fire risk assessment. However, using PCMs as insulation material at very high
loadings results in extremely high heat release rates, even if the burning duration is short.
Present methods to reduce the flammability of organic PCMs include the incorporation of
flame retardants, chemical transformations, and surface coatings [150].

Toxicity of PCMs is another safety concern. Many studies indicate that low toxicity
to humans can be found in many salt hydrates, with different salt hydrates exhibiting
different toxicity levels [151–153]. Although this does not cause considerable issues if they
are carefully encapsulated, the disposal of these salt hydrate wastes can cause significant
environmental problems. For organic PCMs, although they are non-toxic, they still release
toxic gases if they catch fire [43,154], highlighting the need for anti-flammability techniques
in applications.

4.4. Economic Considerations

The decision to integrate PCMs in buildings is influenced by the economic benefits
relative to the cost. The cost consists of the initial investment and annual cost for the PCM-
integrated system. The initial investment cost is determined by the pricing of the PCMs and
the PCM incorporation technique [155]. PCM pricing varies significantly across different
regions, irrespective of the PCM category. Moreover, macroencapsulation is considered the
most cost-friendly PCM incorporation technique, while micro/nanoencapsulations are the
most expensive [156,157]. In calculating the payback time, the benefits of using PCM can be
directly evaluated based on the saved energy, as the energy and price have a clear relation.
Another consideration is the degradation in PCM performance, which can be evaluated by
exergy [158].

4.5. Recyclability and Environmental Impact

The recycling of PCMs in building material waste presents both challenges and op-
portunities from environmental and economic perspectives. The recyclability of PCMs is
primarily determined by their incorporation methods. For instance, it is almost impossible
to recycle PCMs in concrete waste containing microencapsulated PCMs. Conversely, it is
much easier to collect macroencapsulated PCMs. Specifically, great recyclability has been
observed in many SSPCMs through simple shredding, heating, and remoulding processes.
Yang et al. [159] prepared a PEG-based SSPCM exhibiting excellent recyclability, with al-
most no difference between the original and the recycled PCM. Similar achievements have
been reported by Yang et al. [160], Bai et al. [161], and Yang et al. [162].

The environmental impact of a PCM-integrated building envelope should be evaluated
from two aspects: first, how much greenhouse gas emission is reduced by the integrated
PCM, and second, the pollution and greenhouse emissions caused from manufacturing
to installation of the PCM-integrated building envelope [163]. A well-accepted method
for analyzing the environmental impact of PCMs in buildings is to conduct a life cycle
assessment (LCA) or life cycle cost analysis (LCCA). By conducting an LCA in Puigverd de
Lleida (Spain), Gracia et al. [164] showed that the benefits of PCMs increase in locations
where the weather conditions are consistent throughout the year. It is better to use salt
hydrates than paraffins to reduce the manufacturing/disposal impact. Zhang et al. [165]
conducted an LCCA of residential building walls enhanced with PCMs and showed that in
Xi’an, China, for PCM Brick exterior walls, the thicker the phase change layer, the better
the economic and environmental benefits. The payback period in the Xi’an area is between
10.13 and 13.41 years, the carbon payback period is between 3.3 and 4.3 years, and the
carbon reduction is between 244.69 and 82.60 kg CO2/m2.
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5. Novel Applications of PCMs for Building Envelopes

PCMs and their composites can be integrated into various building materials and
components. Traditional applications involve PCM-integrated building materials such as
bricks [13,166], panels [167,168], slabs [118,169], and more, which are then incorporated
into roofs, floors, and walls to serve as thermal dampers. These materials help reduce
and delay thermal fluctuations, thereby acting as a passive thermal regulation technique
to achieve a comfortable indoor temperature [170,171] based on their energy charge and
discharge cycles.

There are also hybrid applications of PCMs with other building envelopes as shown
in Table 4. A notable example is the integration of PCMs with building-integrated photo-
voltaics (BIPVs). In this application, PCMs function as a heat sink with large heat capacity
to cool down the PV panels and simultaneously reduce the heat load to the building intro-
duced by the PV panels [172–174]. Moreover, the heat stored in the PCM can be utilized by
auxiliary devices like heat pumps and thermoelectric generators, which further improves
the energy efficiency of the building [175,176]. Another well-known integration is the
combination of PCMs with Trombe walls [177]. The marriage of these two passive tempera-
ture regulation techniques can provide more stable temperature stabilization performance,
thanks to the improved energy density, stabilized temperature variations, and high thermal
insulation performance introduced by the PCM [178–180].

Moreover, new energy-saving techniques in buildings, such as radiant cooling, radia-
tive sky cooling, and thermochromic coatings have emerged in recent years. This section
introduces the novel integration techniques of PCMs with these hybrid technologies.

Table 4. Some hybrid PCM applications in building envelopes with different incorporation methods.

PCM Incorporation Integrated Application

Poly (Octadecyl Methacrylate) (PSMA) [181] SSPCM Thermo-optical coating for windows
Paraffin [182] Macroencapsulated PCM BIPV facade
Binary eutectic PCM [183] Macroencapsulated PCM Trombe wall
CaCl2·6H2O [184] Shape-stablized PCM Radiant cooling panel system
n-dodecane [185] Microencapsulated PCM Radiative cooling coating
PEG [186] Shape-stablized PCM Photothermal functional concrete
n-octadecane [187] Shape-stablized PCM Electromagnetic interference shielding wall
Binary eutectic PCM [188] Microencapsulated PCM Icephobic coating
OM32 (salt hydrate) [189] Macroencapsulated PCM Solar photocatalytic ventilation wall

5.1. PCM-Integrated Radiant Cooling/Heating Systems

Radiant cooling (RC) and radiant heating (RH) systems are increasingly recognized
for their ability to provide high thermal comfort due to the significant role of radiative heat
transfer between humans and indoor building envelopes [190]. Moreover, RC systems are
instrumental in advancing low-carbon buildings, with reports indicating energy savings
of up to 41% compared to traditional air conditioners and 34% compared to Variable Air
Volume (VAV) systems [191–193]. The integration of PCMs into these systems enhances
their energy storage capability, providing more stable surface temperatures and improved
energy efficiency [194].

Bogatu et al. [195] analyzed the performance of a macroencapsulated PCM panel
embedded with water pipes, designed for use as an RC ceiling (as shown in Figure 8a).
The system, actively cooled by the discharge of water, successfully maintained the in-
door thermal environment. Findings indicated that the average specific cooling power
of the system was 11.3 W/m2, surpassing that of commercial microencapsulated PCM
gypsum panels but falling below the performance of traditional RC panels. González
and Prieto [196] conducted a numerical study on the thermal performance of an RH floor
integrated with PCM bands. They discovered that incorporating PCM into the concrete core
somewhat reduced the heat transfer efficiency. However, during the discharge phase when
the heating was turned off, the PCM RH floor maintained a stable heat flux ranging from
31.4 W/m2 to 44.6 W/m2 for more than 24 h, aligning closely with the time-average value.



Sustainability 2024, 16, 6482 15 of 27

Liu et al. [197] studied a PCM-integrated RH Trombe wall (as illustrated in Figure 8b).
Their research revealed that this integration lowered the peak inner surface temperature
of the south wall by 3 °C compared to a traditional Trombe wall and also reduced indoor
heat gain by 55.2%, indicating superior energy efficiency. Cesari et al. [198] explored the
integration of two types of PCMs with different melting points (17 °C and 27 °C) in a
radiant floor system, designed to offer both cooling and heating capabilities (as depicted
in Figure 8c). During summer, the system could be turned off, allowing the PCM to absorb
excess heat and shift energy use to off-peak hours. In winter, the system maintained an
indoor temperature of approximately 20 °C for 9 h without heating, achieving a 13% energy
saving compared to an air handling unit (AHU) alone.

Figure 8. (a) Schematic of an RC ceiling with PCM. Figure reprinted from [195]. (b) Schematic of
a PCM-integrated RH Trombe wall. Figure reprinted from [197]. (c) Radiant floor integrated with
macroencapsulated PCM. Figure reprinted from [198].

5.2. PCM Assisted Passive Radiative Cooling

Passive radiative cooling (PRC) has emerged as a promising technology for reducing
cooling loads and mitigating the urban heat island effect. Advances in material science
over the past decade have significantly contributed to the development of daytime PRC
materials characterized by their emissivity in the mid-infrared region, specifically within the
atmospheric window (mainly between 8–13 µm), which enhances their cooling capabilities.
The integration of PCMs with PRC materials not only improves thermal stability but also
enhances the ability to save and shift cooling capacity [199].

Atiganyanun et al. [200] explored a method for incorporating microencapsulated
PCMs into PRC paint (specifically BaSO4) to boost its cooling performance. Their findings
indicated that the addition of microencapsulated PCM had little impact on the emissivity of
the paint. Additionally, the PCM was able to absorb excess heat from the interior, thereby
maintaining the paint’s cooling effectiveness. Yang et al. [199] developed a bi-layer phase
change material-enhanced radiative cooler (PCMRC) as shown in Figure 9. The PCMRC
demonstrated adaptive temperature regulation capabilities: during the day, the PCM
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layer absorbs excess heat from the RC layer, which is above the melting temperature of
the PCM. At night, the PCM releases this stored heat to the surroundings. This cycle
effectively provided an average ambient temperature reduction of 6.3 °C during the day
and an average temperature increase of 2.1 °C at night, showcasing its dual cooling and
warming functions. Su et al. [201] introduced a dynamic radiative cooler incorporating a
top layer of paraffin. In this innovative design, the paraffin not only serves as a PCM for
energy storage but also acts as a self-switchable cover. This transition occurs as the paraffin
changes from solid to liquid; the spectral transmittance of solid paraffin remains below 5%,
whereas it exceeds 90% when the paraffin is in its liquid state. This property allows for an
adaptive response to varying thermal conditions, enhancing the overall functionality of the
radiative cooler.

Figure 9. A bi-layer phase change material-enhanced radiative cooler (PCMRC). (a) Working principle
of the PCMRC. (b) The structure of the PCMR. (c) Cooling performance comparison using RC and
the PCMRC. The data were measured from 4 to 5 April 2022, in Shenzhen, China. Figures reprinted
from [199].

5.3. PCM-Integrated Thermochromic Coatings

Thermochromic coatings are a novel energy-saving solution that regulate solar ir-
radiation penetration to minimize radiative heat exchange between buildings and the
environment [202]. These coatings respond dynamically to changes in temperature, ad-
justing their properties to either block or allow solar heat, thus helping to maintain indoor
thermal comfort more efficiently. Hydrogels, perovskite, and vanadium dioxide (VO2)
are predominant materials for thermochromic coatings [203]. VO2, as a type of PCM, is
particularly noted for its ability to shift from a monoclinic to a rutile phase at a transition
temperature of 341 K, changing its transparency in the NIR region and thereby enabling
smart thermal regulation [204]. However, the high phase change temperature of VO2
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limits its practical applications in cooler climates or during milder weather conditions.
To address this, researchers have explored doping strategies to modify the transition tem-
perature. For example, Shen et al. [26] successfully reduced the phase change temperature
of VO2 by 21.6 °C through tungsten doping, making it more suitable for a broader range of
climatic conditions.

Further advancements in thermochromic technologies include the development of
multifunctional coatings. Pi et al. [205] prepared a smart window coating consisting of
core–shell VO2 nanoparticles that are both thermochromic and hydrophobic, providing
antifouling properties. This superhydrophobic surface is resistant to a broad range of
liquids and exhibits robust mechanical strength, making it ideal for long-term applications.
Geng et al. [206] developed a self-templated method to produce ultrahigh transparent VO2
nanoparticles. By controlling the grain size, they achieved a luminous transmittance of
up to 82.9% for a single-sided VO2 coating, enhancing both the aesthetic and functional
properties of the material. The integration of thermochromic coatings with other types
of PCMs can further enhance thermal performance. Jin et al. [207] numerically analyzed
the thermal performance of window structures with various glazings. They found that
triple glazing windows integrated with PCM, VO2 coating, and low-E coating were the
most energy efficient, reducing heat gain by up to 32% on sunny days and 40% on cloudy
days during summer compared to standard double glazing. Ji and Li [208] explored
a combined thermochromic–PCM system aimed at improving thermal performance in
extreme environmental conditions as shown in Figure 10. Their simulations indicated that
this system could reduce annual energy demand by 42.9 kWh/m2, achieving an energy
saving rate of up to 39%. Moreover, Imghoure et al. [209] assessed the thermal performance
of a smart wall with five different configurations, incorporating W-doped VO2 and two
layers of PCMs with distinct melting temperatures as shown in Figure 10. This configuration
demonstrated optimal performance, achieving comfortable indoor temperatures in both
summer and winter seasons.

Figure 10. (a) A combined thermochromic–PCM system for extreme weather conditions. Figure
reprinted from [208]. (b) Configuration of a PCM thermochromic smart wall towards indoor comfort
for both summer and winter seasons. Figures reprinted from [209].

5.4. Other Applications

PCMs offer significant benefits in thermal regulation and energy storage, making
them ideal for integration with various building envelope systems. Čurpek et al. [182]
investigated the dynamic thermal response of a PCM-integrated BIPV system as illustrated
in Figure 11a. Their study revealed that by incorporating PCMs, the BIPV/PCM system
could reduce the peak operating temperature of photovoltaic panels by approximately
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3 °C. This temperature reduction is crucial, as it enhances the electrical efficiency of the PV
panels, which typically decrease in performance as temperature increases. Additionally,
the integration of PCMs also resulted in reduced temperature fluctuations on the wall side,
contributing positively to maintaining a more consistent and comfortable indoor environ-
ment. Izadpanah et al. [210] assessed the thermal efficiency of a double skin facade (DSF)
integrated with PCMs and a green roof. Their findings indicated that this combination sig-
nificantly reduced the cooling load in three different cities in Iran as depicted in Figure 11b.
The synergy between the DSF, which provides an additional layer of thermal insulation
and solar shading, and the PCM, which modulates the heat gains and losses, coupled with
the natural cooling effect of a green roof, creates an effective barrier against heat penetra-
tion, thereby enhancing the overall energy efficiency of the building. Németh et al. [211]
advanced the functionality of PCMs by developing an antimicrobial microencapsulated
PCM, which involves encapsulating coconut oil in a calcium alginate shell embedded with
silver nanoparticles. This novel PCM demonstrated significant antimicrobial properties,
effectively eliminating both bacteria and fungi by the antimicrobial effect introduced by
the Ag nanoparticles as shown in Figure 11c. The experimental results indicated that the
highest loading of Ag nanoparticles (1.3%wt related to the total capsule) dispersed on
the shell was particularly effective. This development holds promise for applications in
office and home buildings, where it can provide both thermal regulation and antimicrobial
functions, ensuring a healthier indoor environment. These applications indicate that PCMs
not only contribute to thermal management but also broaden the scope of their utility in
creating more adaptive and health-conscious building environments.

Figure 11. (a) Schematic of a BIPV/PCM facade. Figure reprinted from [182]. (b) Cooling load of a
building with different envelope configurations in three Iranian cities, Amol (green curves), Tehran
(black curves), and Yazd (red curves). The bold solid line, dashed line, and bold dashed line represent
the cooling load by the DSF, DSF with PCM, and DSF with PCM and a green roof, respectively.
Figure reprinted from [210]. (c) Antifungal effect with varying Ag nanoparticle concentration. Figure
reprinted from [211].
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6. Conclusions and Future Prospects

This paper provides a comprehensive review of the state-of-the-art PCM technology
for building envelope applications. Various types of PCMs, including organic, inorganic,
and eutectic candidates, are surveyed, and their advantages and disadvantages are ana-
lyzed. Different PCM incorporation methods such as shape stabilization, macroencapsula-
tion, micro/nanoencapsulation, and solid–solid transition techniques are also discussed.
These methods are crucial in addressing challenges like leakage and phase separation,
thereby enhancing the practical viability of PCMs for construction uses. Furthermore, this
paper conducts a review of the criteria for integrating PCMs into buildings and explores
the novel applications of PCMs. The integration of PCMs into various building envelopes
demonstrates their potential to meet specific environmental and functional requirements,
making them a versatile and essential component of modern green building strategies.
The main findings of this review are summarized below:

• In building envelopes, PCMs can increase the thermal inertia of a building, reduce ther-
mal fluctuations, and delay heat peaks. Although some materials, such as SSPCMs and
eutectic alloys, show great potential, they currently have limited studies in building
envelopes due to their underdevelopment.

• The novel applications of PCMs in buildings leverage their temperature-stabilizing
and energy storage capabilities, providing multifunctional benefits and significant
potential for use in various building applications.

• Despite their advantages, integrating PCMs can introduce several issues, including
fire hazards, potential toxicity, pollution, reduced mechanical performance, and higher
initial costs. These issues should be considered during the building design process
and are often overlooked in novel applications discussed in this paper.

• It is shown that integrating PCMs in buildings can reduce the energy consumption
of HVAC systems. However, in some regions, traditional insulation materials may
suffice, and the payback time for PCM integration may exceed the building’s lifespan.
Therefore, conducting a LCA or LCCA is necessary for PCM-integrated buildings.

• There are numerous choices for PCMs in building envelope design, each with distinct
advantages in different aspects. Selection should be optimized based on integration
circumstances, building design, sustainability considerations, and local climate.

These are some promising areas for future study to further advance PCM applications
in building envelopes, summarized below:

• Currently, there are few studies on the applications of eutectic alloy PCMs in build-
ing envelopes. Although these PCMs are more costly than organic PCMs and salt
hydrates, their high thermal conductivity and volumetric energy density warrant
further investigation.

• Research on SSPCMs has primarily focused on material preparation rather than appli-
cations. Techniques for enhancing heat transfer in SSPCMs require further development.

• The long-term performance of PCMs currently relies on thermal stability and reliability
analysis, yet there is a lack of experimental data over extended periods.

• Further investigations are needed to integrate PCMs with other functional materials,
such as photothermal materials for building envelopes in cold regions, noise-canceling
materials, or electromagnetic wave insulation materials for buildings with special-
ized uses.

• Studies should be conducted on the large-scale impacts of PCM-integrated envelopes
on the urban heat island effect.
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