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A B S T R A C T   

The reliance on optimization techniques for robust assessments of environmental and energy-saving solutions has 
been largely driven by the increasing need to comply with international energy policies. However, numerous 
challenges arise from inherently conflicting objectives for a sustainable built environment, that is, maximizing 
thermal comfort, and indoor air quality, while minimizing energy consumption, forming a multi-objective 
optimization problem. Consequently, studies seeking multi-faceted optimality in the design and/or operation 
of low-energy buildings have exponentially increased over the past few years. This research critically reviews the 
latest multi-objective optimization studies that present energy consumption, thermal comfort, and indoor air 
quality as competing targets. By examining 82 records between 2013 and 2022, key discussions focused on 
commonly investigated objective functions, design variables, and performance metrics. The review also in-
vestigates the latest research trends, optimization techniques, algorithms, and tools, and identifies gaps in 
knowledge and potential future research directions. The review results showed that most studies used a holistic 
approach that targeted all three objective functions, with the largest portion performed on office and residential 
buildings. The most commonly investigated design variables are system-related variables, whereas building- 
related and occupant-related variables are often overlooked. Coupling simulation tools and optimization algo-
rithms is the most widely utilized optimization approach, with genetic algorithms being the most employed. 
These findings suggest a promising area for future research on methodological optimization approaches, which 
are expected to be significantly transformed with the rapid development of artificial intelligence technologies.   
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1. Introduction 

Efforts to reduce the environmental impact of buildings have led to 
the development of various codes and standards devised to lower energy 
consumption in buildings, and the introduction of paradigms such as 
net-zero energy buildings (NZEBs), nearly zero energy buildings 
(nZEBs), and highly energy-efficient buildings. This regulatory shift 
imposed stringent requirements on the building industry and created a 
need to transform the way buildings are designed, controlled, and 
operated [1]. Building optimization, an automated process that per-
forms an infinite number of computations to identify the best solutions 
while meeting performance requirements [2], has become an essential 
research tool supporting in decision-making processes [3]. 

Most building optimizations target energy consumption as the cen-
tral objective function, aiming for highly energy-efficient buildings that 
satisfy indoor comfort standards and require a multi-faceted solution to 
guarantee a fair trade-off [4]. The significance of other fundamental 
optimization objectives related to the quality of indoor environments, 
such as thermal comfort and indoor air quality (IAQ), which appear to 
conflict with energy reductions targets, has been highlighted in the 
literature [5]. Addressing this multimodal problem has been driven by 
advancements in numerical simulations and mathematical optimization 
methods [6]. 

Several studies in the literature had previously reviewed building 
optimization research; nevertheless, these reviews had limitations in: 

• Scope/context: Several reviews have investigated building optimi-
zation in a limited scope, for example, confining research to smart 
homes [7], smart buildings [4,8], low-energy buildings [1], nZEBs, 
NZEBs, and high-energy performance buildings [2], which were 
mainly target optimized energy consumption.  

• Topics/themes: Heating, ventilation, and cooling (HVAC) system 
optimization [9], the use of computational intelligence techniques 
for HVAC systems [10], control systems for building energy and 
comfort management [4], and using artificial intelligence (AI)-based 
techniques for optimizing energy consumption and thermal comfort 
[11] are a few examples of themes or topics that have been the 
subject of several reviews. Hence, many studies that performed 
optimization research for other systems or used other techniques 
have been dismissed.  

• Optimization objectives: Energy consumption optimization [1,9], 
energy consumption and thermal comfort optimization [8,11], en-
ergy use and comfort index [4,7,9], or studies that were not geared 
toward one or more optimization objectives [6,10] were generally 
the subject of earlier reviews. This demonstrates that review articles 
have not comprehensively covered studies that optimized IAQ in 
conjunction with energy consumption and/or thermal comfort. Even 
with the inclusion of all three goals, a full analysis of the state of 
building optimization research, which strives to minimize energy 
consumption while improving thermal comfort and IAQ, is still 
restricted by topics or scope limits. 

To the best of authors knowledge, no review has assessed building 
optimization research in a holistic manner that simultaneously in-
tegrates energy use, thermal comfort, and IAQ targets without being 
restricted to a specific theme or scope. Thus, the goal of this research is 
to offer an in-depth investigation of multi-objective optimization studies 
targeting the three key sustainable building goals. Consequently, this 
study aims to make the following contributions: 

• Provide an up-to-date insight into building performance optimiza-
tion (BPO).  

• Investigate the application of multi-objective optimization research 
in different building types and geographical contexts. 

• Highlight commonly investigated objective functions, design vari-
ables, and performance metrics.  

• Investigate the state-of-the-art optimization techniques, algorithms, 
and tools.  

• Identify emerging trends, technological advances, knowledge gaps, 
and potential opportunities for future research. 

Section 2 provides an overview of the BPO procedure, terminologies, 
components, and algorithms in. Section 3 provides a description of the 
review methodology, search strategy, and selection criteria adopted in 
this study, along with an overview of the literature distribution. Section 
4 provides the main literature review findings, and discussion. Finally, 
Section 5 summarizes the main research conclusions and future research 
directions. 

2. Background 

2.1. Building performance optimization 

Building performance simulation (BPS) programs are indispensable 
in guiding early design decisions, enhancing building operations and 
control, and providing refurbishment strategies for existing buildings 
[12,13]. A strategy that involves adjusting variable inputs to observe 
their impact on design objectives while maintaining the other variables 
constant is sometimes utilized to improve building performance. This 
parametric simulation method is typically repeated multiple times to 
test different variables at each iteration [6]. However, this iterative 
trial-and-error procedure can be time-consuming and may only offer 
limited improvements owing to the complexity of the problem and the 
nonlinearity between input factors [6,14]. BPO can overcome these is-
sues by automating this procedure [2]. In a BPO process involving 
modelling, computation, and search algorithms, an optimal solution to a 
single- or multi-objective problem is found by running limitless calcu-
lations within a search space. This strategy is commonly used to enhance 
the design, aesthetics, operation, and/or control of buildings by tar-
geting outcomes related to their geometry, structure, energy, comfort, 
and economic aspects [2]. 

Numerical simulations are commonly coupled with mathematical 
optimization to solve optimization problems; this is an approach called 
simulation-based or numerical optimization. The coupling approach 
between BPS and BPO through simulation-based optimization is the 
most time- and labor-efficient approach [2,6]. Building optimization 
problems can also be solved without using simulation tools with the 
rather challenging inverse modelling approach, utilizing mathematical 
or predictive models that define the mathematical relationship between 
inputs and outputs [10,15]. 

2.2. Optimization process & components 

The optimization process is performed by identifying an optimal 
solution from a set of available scenarios for a predefined criterion. The 
performance criterion of any optimization problem, known as the 
objective function, is expressed mathematically and subjected to opti-
mization [2]. When there are two or more objective functions to be met, 
this process becomes a multi-criterion or multi-objective optimization 
[1]. Multiple objective functions can be optimized (i.e., maximized or 
minimized) using one or more algorithms, and evaluated using quanti-
tative metrics called performance evaluation indicators. For example, 
the annual or hourly energy consumption in kilowatt hours can be used 
to evaluate the objective function for minimizing building energy usage. 
A multi-objective optimization problem also comprises constraints and 
dependent variables, either discrete with selection-type constraints or 
continuous with box-type constraints that are confined between the 
upper and lower boundary values [14]. 
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The process of any optimization problem concludes with an optimum 
solution representing the global maximum or minimum defined by the 
optimization objective function. However, for multi-objective optimi-
zation, where two or more objectives must be simultaneously met, there 
is no single optimum solution that can minimize or maximize each 
objective function at the same time. Thus, two steps are executed: 
optimization and decision making [1]. When optimization is performed 
first, the possible solutions will reach the limit values, whereas further 
improvement in one objective function will impair the optimization of 
the other objective functions. In this approach, optimization algorithms 
are used to obtain a set of optimal solutions plotted along a tradeoff 
curve, referred to as the Pareto Front, to facilitate the decision-making 
process and selection of the optimal solution, which can be deter-
mined based on experience, function, or preference [2,16]. However, if 
decision-making occurs prior to optimization, referred to as the 
weighted sum approach, the order and weight of each objective function 
must be determined first to convert the problem into a single-objective 
optimization problem, eventually leading to an optimal solution 
instead of an entire Pareto Front of optimal solutions [1,16]. 

2.3. Optimization algorithms 

Algorithms generally vary depending on the type of optimization 
problem, method of exploring the feasibility space, and the number of 
alternatives. Fig. 1 illustrates the various methods by which these al-
gorithms can be categorized. According to the optimization objective 
function, algorithms are responsible for solving either single- or multi- 
objective optimization problems. The direction of the processes (i.e., 
optimization and decision-making) involved in handling multi-objective 
optimization problems demonstrates a different method of categorizing 
multi-objective algorithms as a priori or a posteriori method. Depending 
on how the objective function is expressed, algorithms can be deter-
ministic (exact) or heuristic (stochastic). The objective function, which 
is expressed in an analytical form in the deterministic approach, must be 
continuous and differentiable. In the heuristic approach, it does not have 
to be either and is primarily expressed based on the experience of the 
specialist performing the optimization. Depending on the number of 
variables considered in each iteration of the optimization process, al-
gorithms can be either single-point (by performing a local search and 
looking at variables one at a time) or population-based (by performing a 

global search and considering a set of variables in each iteration) [1]. 
The type of optimization approach, selection of algorithms, and 

modelling techniques depend on the optimization problem and nature 
and complexity of its variables, objectives, and constraints. Therefore, 
given the complex nature of optimization problems, it is often impos-
sible to provide a generalized criterion for algorithm selection [6]. Al-
gorithms for multi-criteria building optimization fall into two 
categories. The first category comprises deterministic algorithms that 
simplify multi-objective problems by translating each objective function 
into a scalar measure; the measure is then calculated using the weighted 
sum of its criteria [6,17]. The second category includes 
population-based stochastic algorithms, which are widely utilized in 
complex and constrained multi-objective optimization problems as they 
require less computational time and have fewer mathematical properties 
than other algorithms [6]. Particle swarm optimization (PSO) and ge-
netic algorithms (GA) are common population-based algorithms [1]. 

3. Methodology 

3.1. Overview 

Building optimization research focusing on energy consumption, 
thermal comfort, and IAQ was investigated through a systematic review 
methodology to comprehensively assess the available literature on 
multi-objective optimization over the last ten years. Through this re-
view, a comprehensive and up-to-date summary of the knowledge in this 
area was presented by identifying popular themes, methods, and ap-
proaches. The key review outcomes within the scope of the proposed 
research are shown in Fig. 2. 

3.2. Search strategy and criteria 

This review addresses studies that seek optimal solutions through 
optimization techniques for at least two of the following three objec-
tives: minimizing building energy consumption, maximizing occupant 
thermal comfort, and maximizing IAQ. Studies investigating iterative 
improvements, monitoring, scenario assessments, and those performing 
parametric analyses were excluded from this review. In addition, to 
capture the latest optimization approaches in the literature, only studies 
published in the last decade (i.e., from 2013 to 2022) were considered. 

Fig. 1. Optimization algorithms classification (extracted from Refs. [1,6]).  
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As shown in Fig. 3, the search of the literature was conducted in the 
internationally recognized “Web of Science” database using a combi-
nation of keywords: “optimization,” “multi-objective optimization,” 
“optimal,” “optimized,” “thermal comfort,” “comfort,” “Indoor air 
quality,” “IAQ,” and “energy.” The literature search began in early 2023; 
therefore, articles published until the end of 2022 were included in this 
review. 

3.3. Literature distribution 

Initially, 494 publications were obtained, including 36 review arti-
cles that, although examined and cited in some sections of this review, 
were not part of the literature analysis or the results reported in this 
study. Furthermore, screening the titles and abstracts of the remaining 
458 publications followed by a thorough evaluation of the exclusion 
criteria resulted in 82 publications that formed the foundation of this 
review. The examined studies were published in several leading journals 
and conferences (75 journal articles and 7 conference proceedings) with 
the highest number of publications from papers featured in Building and 
Environment, Applied Energy, and Energy and Buildings Journals 
(Fig. 4). A summary of the literature review is presented in Table 1 and is 
categorized based on the reference, year of publication, location, 
building type, and basic optimization parameters, such as objective 
functions, simulation tools, optimization methods, algorithms, and 
optimization tools utilized. 

The popularity of BPO has increased in the last ten years, peaking in 
2022. Office buildings ranked first among all the building sectors 

investigated in the literature (approximately 43 % of buildings), fol-
lowed by residential and educational buildings (approximately 17 % and 
11 %, respectively). Although most studies (approximately 55 %) have 
not been linked to a specific geographic location, most optimization 
studies have focused on buildings in the US and China, accounting for 
10 %, and 9 % of all studies, respectively, compared with fewer in 
Lebanon, Korea, Malaysia, Poland, Canada, Qatar, Egypt, Portugal, 
France, Cyprus, Taiwan, South Africa, Australia, India, and Italy. The 
distribution of the years, building sectors, and countries covered by the 
analyzed literature is illustrated in Fig. 5. 

4. Results 

4.1. Main optimization topics and parameters 

Presenting the methodological novelty is one of the primary contri-
butions of the reviewed optimization research. Numerous attempts have 
been made to experiment with different optimization algorithms, test 
them, and propose new methodologies. For instance, the main goal of 
several studies was to develop an optimization methodology, scheme, or 
framework (e.g. Refs. [45,46]); develop an optimization model (e.g. 
Refs. [61,62,78]); or propose a new control method (e.g. Refs. [44,52, 
80,83]). Other studies have performed comparative analyses between 
different algorithms or prediction techniques [15,53,87], proposed a 
hybridization model between two algorithms [64], or assessed the use of 
a novel combination of algorithms, simulation techniques, predictions, 
and/or statistical methods (e.g. Refs. [51,67,68]). 

Fig. 2. The review proposed scope and outcomes.  
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The key topics identified in the evaluated studies were divided into 
six categories: Half of the reviewed studies investigated the optimal 
system control schemes, strategies, and settings to achieve optimized 
energy consumption, thermal comfort, and IAQ. For system design and 
operation (approximately 33 % of the literature), the principal investi-
gation was to determine the optimal system-specific design variables, 
including the inlet air temperature, velocity, flow angle, and system 
component dimensions. The reviewed studies less frequently considered 
the following optimization topics: optimal building and envelope design 
(9 %); optimal building design and system control (5 %); optimal 

occupant behavior (2 %); and optimal system design, operation, and 
control (1 %), as shown in Fig. 6. 

Since system control, system design, and operation were the most 
studied topics, it was expected that most studies (82 % of the reviewed 
work) would investigate system-related variables (Fig. 7). Examples of 
the commonly used system-related variables include temperature set 
points, supply air temperature, velocity, humidity, different control 
strategies, ventilation strategies, and ventilation rates. These variables 
are largely connected to HVAC and ventilation systems, which have 
been the most investigated systems in the last decade. Indoor and 

Fig. 3. Flowchart of the literature review selection and screening process.  
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outdoor environmental-related variables, which are generally consid-
ered during building simulations, have only been reported in 40 % of the 
reviewed studies in the form of outdoor and indoor environmental pa-
rameters (e.g., seasonal variations, different locations, climates, and 
weather conditions). Occupancy-related variables (e.g., number of oc-
cupants, presence, positions, preferences, behaviors, and activities) and 
building-related variables (e.g., building orientation, envelope compo-
nents, window design, building material and insulation) were the least 
explored and examined in only 21 %, and 17 % of publications, 
respectively. Additional design variables were rarely addressed (11 % of 
reviewed studies). These included energy and electricity prices, market 
uncertainty, internal heat gains, and neighborhood locations. 

Various approaches have been used to investigate occupant-related 
variables, including number of occupant [40,88]; occupancy density 
[55]; occupant behavior [98]; occupant numbers and actions [70]; 
specific occupancy scenarios [52]; occupancy status (i.e., occupied and 
unoccupied modes) [18,20,22,73]; user preference profiles [90]; and 
occupant presence, activities, and/or preferences [59,63,83]. Further-
more, several studies considered occupant-related variables by investi-
gating the impact of varying occupant clothing insulation during winter 
and summer on design objectives, as employed in Refs. [49,79] or the 
impact of different occupant seating distributions, as performed in 
Ref. [45]. This demonstrates that in comparison to other design vari-
ables, there is a variable selection of design parameters reflecting oc-
cupancy in the reviewed literature, particularly given that some were 
based on real-time data, whereas others were predicted or assigned data. 

The most investigated building parameters were the envelope com-
ponents, materials (e.g. Refs. [77,84]), and window design (e.g. Refs. 
[30,33,38]). The reviewed works also explored the impact of different 
building types [74,90]; building sizes [38,75]; building orientations [33, 
81]; and interior layouts [95]. Despite variations in optimization ob-
jectives and techniques, all studies examining building-related variables 
have used a simulation and algorithm-based optimization approach. The 
selection of this approach can be ascribed to the capacity of the 

simulation tools to provide a full and accurate representation of the 
building design, envelope, and materials before performing the opti-
mization procedure. 

4.2. Optimization objective functions and indicators 

Most reviewed studies performed multi-objective optimization 
research aimed at improving energy, thermal comfort, and IAQ (55 out 
of 82), accounting for approximately 67 % of all reviewed studies. The 
combination of the following optimization objectives “energy and 
thermal comfort,” “energy and IAQ,” and “thermal comfort and IAQ” 
have only constituted 17 %, 9 %, and 7 %, respectively. Assessing the 
yearly distribution of optimization objectives over the last decade re-
veals that optimizing all three objective functions has continued to be 
the primary target for optimization studies (Fig. 8). Additional optimi-
zation objectives were also explored in approximately 28 % of the 
literature, with the most common being visual comfort (in 16 % of the 
studies), primarily as a fourth objective, followed by productivity (in 5 
% of the studies). The use of ventilation [81]; lighting quality [81,97]; 
academic performance [69]; life cycle cost [97]; neighborhood quality 
[97]; water consumption [71]; interference with daily routine [70]; 
durability [91]; and artifacts conservation [17]; were other less 
frequently employed objective functions. 

The predominant performance metric for energy-related objectives is 
“Energy Consumption,” adopted in 47 % of studies (i.e., studies with 
energy consumption as one of the objective functions), followed by 
“energy cost” and “energy utilization coefficient (EUC)” in 13 %, and 5 
% of studies, respectively. The following are brief descriptions of the 
three most popular energy metrics adopted in literature.  

• Energy consumption or use can be calculated on an hourly, daily, 
weekly, monthly, or annual basis. The energy consumed by a 
building, HVAC system owing to cooling, heating load, ventilation 
power, or any other building system is a straightforward method to 

Fig. 4. Distribution of publications across journals and conference proceedings.  
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Table 1 
Summary of the studies performing multi-objective optimization of energy, thermal comfort, and IAQ between 2013 and 2022.  

Energy, Thermal Comfort, and IAQ Optimization 
Ref. Year Location Building Type Optimization Objectives Simulation Tools Optimization 

Method 
Optimization Algorithm 
(s) 

Optimization Tools 
Energy Thermal 

Comfort 
IAQ Other Energy Tools CFD Tools 

[18] 2013 USA Office Building ✓ ✓ ✓ N/A RC Network Model 
(MATLAB) 

N/A Simulation & 
Algorithm-based 
Method 

Control Algorithms IPOPT 

[19] 2013 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (Airpak) Simulation & 
Algorithm-based 
Method 

GA N/A 

[20] 2014 USA Office Building ✓ ✓ ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Iterative relaxing 
Algorithm & Control 
Algorithms 

N/A 

[21] 2015 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
CFX) 

Simulation & 
Algorithm-based 
Method 

NSPSO N/A 

[22] 2015 USA Commercial 
Building 

✓ ✓ ✓ N/A RC Network Model 
(MATLAB) 

N/A Simulation & 
Algorithm-based 
Method 

Control Algorithms IPOPT 

[23] 2015 Lebanon Office Building ✓ ✓ ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA N/A 

[24] 2016 Lebanon Office Building ✓ ✓ ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA MATLAB 

[25] 2016 Korea Office Building ✓ ✓ ✓ N/A EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

GA MATLAB 

[26] 2017 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
CFX) 

Simulation & 
Algorithm-based 
Method 

NSPSO MATLAB 

[27] 2017 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (Airpak) Simulation & 
Algorithm-based 
Method 

NSGA-II MATLAB 

[28] 2018 N/A N/A ✓ ✓ ✓ N/A N/A CFD Simulation & 
Algorithm-based 
Method 

GA N/A 

[29] 2018 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (Airpak) Simulation & 
Algorithm-based 
Method 

Taguchi Method N/A 

[30] 2019 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (Star- 
CD) 

Simulation & 
Algorithm-based 
Method 

GA N/A 

[31] 2019 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (Airpak) Simulation& TOPSIS- 
based Method 

N/A N/A 

[32] 2019 N/A Train Cabin ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation & 
Algorithm-based 
Method 

NSPSO New MOO Platform 

[33] 2019 N/A N/A ✓ ✓ ✓ N/A EnergyPlus & 
Autodesk Ecotect 

N/A Simulation & 
Algorithm-based 
Method 

GA MATLAB 

[34] 2020 N/A N/A ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation & 
Algorithm-based 
Method 

GA MATLAB 

[35] 2020 China Office Building ✓ ✓ ✓ N/A EnergyPlus CFD (Airpak) Simulation & 
Algorithm-based 
Method 

Marquardt Method MATLAB 

(continued on next page) 
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Table 1 (continued ) 

[36] 2020 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation& TOPSIS- 
based Method 

N/A N/A 

[37] 2020 N/A Educational 
Building 

✓ ✓ ✓ N/A N/A CFD (Airpak) Simulation & 
Algorithm-based 
Method 

Taguchi Method N/A 

[38] 2020 Cyprus Office Building ✓ ✓ ✓ N/A TAS Engineering N/A Simulation & 
Algorithm-based 
Method 

Taguchi Method N/A 

[39] 2021 N/A Sleeping 
Environment 

✓ ✓ ✓ N/A N/A CFD Simulation& TOPSIS- 
based Method 

N/A N/A 

[40] 2021 N/A Commercial 
Building 

✓ ✓ ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Control Algorithms Python 

[41] 2021 China Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation & 
Algorithm-based 
Method 

Taguchi Method N/A 

[42] 2021 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (Airpak) Simulation & 
Algorithm-based 
Method 

Taguchi Method N/A 

[43] 2021 N/A N/A ✓ ✓ ✓ N/A Co-simulation 
(TRNSYS-MATLAB) 

N/A Simulation & 
Algorithm-based 
Method 

ADMM & GA Co-simulation 
(TRNSYS-MATLAB) 

[44] 2022 N/A Sleeping 
Environment 

✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation & 
Algorithm-based 
Method 

GA N/A 

[45] 2022 N/A Educational 
Building 

✓ ✓ ✓ N/A eQUEST CFD 
(Autodesk) 

Simulation & 
Algorithm-based 
Method 

GWO Algorithm N/A 

[46] 2022 N/A Residential 
Building 

✓ ✓ ✓ N/A N/A CFD 
(FloVENT) 

Simulation & 
Algorithm-based 
Method 

NSGA-II MATLAB 

[47] 2022 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation& TOPSIS- 
based Method 

N/A N/A 

[48] 2022 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation& TOPSIS- 
based Method 

N/A N/A 

[49] 2022 USA Residential 
Building 

✓ ✓ ✓ N/A EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

NSGA-II jEPlus + EA 

[50] 2022 Poland Residential 
Building 

✓ ✓ ✓ N/A Co-simulation 
(EnergyPlus & 
Contam) 

N/A Simulation & 
Algorithm-based 
Method 

NSGA-II Python 

[51] 2022 N/A N/A ✓ ✓ ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

PSO MATLAB 

[52] 2022 Qatar Sports Facilities ✓ ✓ ✓ N/A DesignBuilder 
(EnergyPlus) 

N/A Simulation & 
Algorithm-based 
Method 

Bayesian Optimization 
Algorithm 

Co-simulation 
(EnergyPlus- 
MATLAB) 

[53] 2022 N/A Office Building ✓ ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation& TOPSIS- 
based Method 

N/A N/A 

[54] 2018 South 
Africa 

Office Building ✓ ✓ ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Control Algorithms MATLAB 

[55] 2020 China Different Types ✓ ✓ ✓ N/A DesignBuilder 
(EnergyPlus) 

N/A Simulation & 
Algorithm-based 
Method 

NSGA-II MATLAB 

[56] 2021 N/A Office Building ✓ ✓ ✓ N/A N/A CFD Simulation & 
Algorithm-based 
Method 

Scalarization Method N/A 

[57] 2014 China Intelligent 
Buildings 

✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA N/A 

(continued on next page) 
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Table 1 (continued ) 

[58] 2016 China Office Building ✓ ✓ ✓ Visual Comfort, Acoustic 
Comfort, & Cost 

EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

NSGA-II MATLAB 

[59] 2016 Canada Office Building ✓ ✓ ✓ Productivity RC Network Model 
(Matlab) 

N/A Simulation & 
Algorithm-based 
Method 

Scalarization Method MATLAB 

[60] 2017 N/A Educational 
Building 

✓ ✓ ✓ Visual Comfort EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

GenOpt 

[15] 2017 N/A Residential 
Building 

✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA N/A 

[61] 2018 N/A N/A ✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Intelligent Algorithms 
(various) 

MATLAB (YALMIP 
Toolbox) 

[62] 2019 N/A Vehicle ✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

BAT Algorithm MATLAB 

[63] 2019 Canada Office Building ✓ ✓ ✓ Visual Comfort & 
Productivity 

RC Network Model 
(Matlab) 

N/A Simulation & 
Algorithm-based 
Method 

Scalarization Method MATLAB 

[64] 2020 N/A Residential 
Building 

✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

MATLAB 

[65] 2020 Malaysia Residential 
Building 

✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Bat Algorithm MATLAB (Fuzzy 
Logic Toolbox) 

[66] 2020 N/A N/A ✓ ✓ ✓ Visual Comfort White Box Building 
Energy Model 

N/A Simulation & 
Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

N/A 

[67] 2022 N/A Residential 
Building 

✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

N/A 

[68] 2022 Malaysia Residential 
Building 

✓ ✓ ✓ Visual Comfort Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Bat Algorithm N/A 

[69] 2022 Taiwan Educational 
Building 

✓ ✓ ✓ Academic Performance EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

GA N/A 

[70] 2019 France Office Building ✓ ✓ ✓ Interference with Daily 
routine 

Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

AGE-II Algorithm Python 

[71] 2021 Lebanon Educational 
Building 

✓ ✓ ✓ Water Consumption Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA MATLAB 

Energy, and Thermal Comfort Optimization 
Ref. Year Location Building Type Optimization Objectives Simulation Tools Optimization 

Method 
Optimization Algorithm 
(s) 

Optimization Tools 
Energy Thermal 

Comfort 
IAQ Other Energy Tools CFD Tools 

[72] 2013 N/A Office Building ✓ ✓ N/ 
A 

N/A Simulink N/A Simulation & 
Algorithm-based 
Method 

Control Algorithms MATLAB 

[73] 2013 USA Educational 
Building 

✓ ✓ N/ 
A 

N/A RC Network Model 
(MATLAB) 

N/A Simulation & 
Algorithm-based 
Method 

Control Algorithms IPOPT 

[74] 2015 N/A Different Types ✓ ✓ N/ 
A 

N/A Co-simulation 
(EnergyPlus & 
Matlab) 

N/A Simulation & 
Algorithm-based 
Method 

Scalarization Method N/A 

[75] 2016 USA Office Building ✓ ✓ N/ 
A 

N/A EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

GenOpt 

[76] 2017 Portugal Educational 
Building 

✓ ✓ N/ 
A 

N/A EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

EMS Application 
Code 

(continued on next page) 
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Table 1 (continued ) 

[77] 2020 Poland Residential 
Building 

✓ ✓ N/ 
A 

N/A EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

NSGA-II MATLAB 

[78] 2021 N/A Manufacturing 
Facility 

✓ ✓ N/ 
A 

N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA & SVR Algorithm N/A 

[79] 2021 USA Educational 
Building 

✓ ✓ N/ 
A 

N/A ClimateStudio 
(EnergyPlus) 

N/A Simulation & 
Algorithm-based 
Method 

NSGA-II Grasshopper 

[80] 2022 Egypt Office Building ✓ ✓ N/ 
A 

N/A TRNSYS N/A Simulation & 
Algorithm-based 
Method 

NSGA-II MATLAB 

[81] 2016 China Residential 
Building 

✓ ✓ N/ 
A 

Ventilation & Lighting EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

NSGA-II jEPlus 

[82] 2017 N/A Office Building ✓ ✓ N/ 
A 

Productivity IDA ICE N/A Simulation & 
Algorithm-based 
Method 

NSGA-II MOBO 

[17] 2020 Italy Museum ✓ ✓ N/ 
A 

Artifacts Conservation TRNSYS N/A Simulation & 
Algorithm-based 
Method 

Scalarization Method N/A 

[83] 2022 Korea Smart Buildings ✓ ✓ N/ 
A 

N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Control Algorithms N/A 

[84] 2021 Australia Prefabricated 
Buildings 

✓ ✓ N/ 
A 

Visual Comfort TRNSYS N/A Simulation & 
Algorithm-based 
Method 

NSGA-II jEPlus + EA 

Energy, and IAQ Optimization 
Ref. Year Location Building Type Optimization Objectives Simulation Tools Optimization 

Method 
Optimization Algorithm 
(s) 

Optimization Tools 
Energy Thermal 

Comfort 
IAQ Other Energy Tools CFD Tools 

[85] 2013 N/A N/A ✓ N/A ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

PSO N/A 

[86] 2014 USA Office Building ✓ N/A ✓ N/A EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

Hybrid Optimization 
Algorithm 

GenOpt 

[87] 2015 N/A Office Building ✓ N/A ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

PSO N/A 

[88] 2018 N/A N/A ✓ N/A ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Q-learning Algorithm N/A 

[89] 2020 Korea Subways ✓ N/A ✓ N/A Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

Iterative Dynamic 
Programming Algorithm 

N/A 

[90] 2019 N/A Office Building ✓ N/A ✓ Productivity EnergyPlus N/A Simulation & 
Algorithm-based 
Method 

Gradient-based Interior 
Point Algorithm 

MATLAB 

[91] 2021 China Educational 
Building 

✓ N/A ✓ Durability Mathematical/ 
Predictive Models 

N/A Algorithm-based 
Method 

GA N/A 

Thermal Comfort, and IAQ Optimization 
Ref. Year Location Building Type Optimization Objectives Simulation Tools Optimization 

Method 
Optimization Algorithm 
(s) 

Optimization Tools 
Energy Thermal 

Comfort 
IAQ Other Energy Tools CFD Tools 

[92] 2014 N/A Office Building N/A ✓ ✓ N/A N/A CFD (ANSYS 
Fluent) 

Simulation & 
Algorithm-based 
Method 

GA N/A 

[93] 2017 N/A Laboratory 
Facility 

N/A ✓ ✓ N/A N/A CFD Simulation & 
Algorithm-based 
Method 

PSO N/A 

(continued on next page) 
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evaluate energy consumption optimization. This explains why this 
evaluation metric was utilized in almost 50 % of the optimization 
studies that sought to reduce energy use.  

• Energy cost is typically linked to the utility or energy price from 
electricity, gas or both and is mainly expressed in monetary units (e. 
g. Refs. [40,49]). The energy cost was calculated as the sum of the fan 
power and the cooling energy consumption in Ref. [34] and as the 
sum of the water and electrical energy consumption costs in 
Ref. [71]. 

• The EUC is used to evaluate the effectiveness of the energy utiliza-
tion. Although the recommended EUC values may differ across 
various systems, higher values indicate greater efficiency. Several 
optimization studies [31,39,41,53] have employed the EUC indica-
tor to assess the energy performance. The EUC can be calculated 
using Equation (1):  

EUC = Ts –Te / Ts – Tr                                                                   (1) 

where Ts is the air supply temperature (◦C), Te is the exhaust air tem-
perature (◦C), and Tr is the occupied zone temperature (◦C). 

Thermal comfort was mostly evaluated using the predicted mean 
vote (PMV) indicator either exclusively in 21 % of studies (i.e., studies 
with thermal comfort as one of the objective functions), in combination 
with the percentage of people dissatisfied (PPD) in 3 % of studies, or 
coupled with other indicators such as draft rate, temperature difference 
between head and ankle, PPD of draft sensation, relative humidity, 
temperature gradient, or thermal sensation. In addition, numerous 
studies have evaluated thermal comfort solely using the indoor air 
temperature (in 17 % of studies), or PPD (in 15 % of studies). Brief 
descriptions of the two most frequent and closely related metrics used to 
evaluate thermal comfort are as follows:  

• The PMV index was developed by Fanger, based on the steady-state 
heat balance of the human body. This model considers two influen-
tial human parameters: metabolic rate and clothing insulation, and 
four objective parameters: mean radiant temperature, air tempera-
ture, relative humidity, and air velocity. The PMV mainly seeks 
thermal neutrality by utilizing a thermal sensation scale to represent 
the occupant’s mean thermal satisfaction and determine the indoor 
conditions where occe calculatedupants feel thermally neutral. The 
PMV value of a space can then b using Equation (2) to determine the 
occupant acceptance rate of an indoor environment [99]. ASHRAE 
Standard 55 has identified an acceptable PMV value between - 0.5 
and +0.5, which refers to a 90 % acceptance rate [99,100].  

PMV = [0.303 exp (-0.036 M) + 0.028] *L                                      (2) 

where L is the thermal load and M is the metabolic rate (W/m2).  

• The PPD is another widely used index developed by Fanger. This 
index, which represents the number of people thermally dissatisfied 
with their environment by feeling too hot or cold, is calculated using 
the PMV value in Equation (3):  

PPD = 100 – 95 exp (− 0.03353 * PMV^4–0.2179 * PMV^2)              (3) 

Accordingly, this model targets the lowest value possible to achieve 
thermal comfort with an acceptable threshold of 20 % as recommended 
by ASHRAE Standard 55, which corresponds to a PMV value of − 0.85 <
PMV <+0.85 [100]. A more stringent thermal comfort requirement is 
sometimes used by limiting the PPD value to 10 %, which corresponds to 
a PMV value between − 0.5 and + 0.5. 

Most studies that incorporated IAQ as one of the objective functions 
either adopted the carbon dioxide (CO2) concentration exclusively as the 
evaluation criterion (41 %) or in combination with the airflow rate (3 
%), mean age of air (MAA; 3 %), and total volatile organic compound 
concentration levels (3 %), as illustrated in Fig. 9. The MAA was used to 
evaluate IAQ performance in 13 % of studies. The following are brief Ta

bl
e 

1 
(c

on
tin

ue
d)

 

[9
4]

 
20

19
 

N
/A

 
A

ir
cr

af
t C

ab
in

 
N

/A
 

✓
 

✓
 

N
/A

 
N

/A
 

CF
D

 (
A

N
SY

S 
Fl

ue
nt

) 
Si

m
ul

at
io

n 
&

 
A

lg
or

ith
m

-b
as

ed
 

M
et

ho
d 

G
A

, P
ro

pe
r 

O
rt

ho
go

na
l 

D
ec

om
po

si
tio

n 
&

 A
dj

oi
nt

 
M

et
ho

d 

G
en

O
pt

 

[9
5]

 
20

20
 

In
di

a 
Re

si
de

nt
ia

l 
Bu

ild
in

g 
N

/A
 

✓
 

✓
 

N
/A

 
N

/A
 

CF
D

 (
A

N
SY

S 
Fl

ue
nt

) 
Si

m
ul

at
io

n 
&

 
A

lg
or

ith
m

-b
as

ed
 

M
et

ho
d 

N
SG

A
-II

 
M

A
TL

A
B 

[9
6]

 
20

21
 

N
/A

 
O

ffi
ce

 B
ui

ld
in

g 
N

/A
 

✓
 

✓
 

N
/A

 
N

/A
 

CF
D

 (
A

N
SY

S 
Fl

ue
nt

) 
Si

m
ul

at
io

n 
&

 
A

lg
or

ith
m

-b
as

ed
 

M
et

ho
d 

G
A

 
M

A
TL

A
B 

[9
7]

 
20

14
 

N
/A

 
Re

si
de

nt
ia

l 
Bu

ild
in

g 
N

/A
 

✓
 

✓
 

Li
gh

tin
g 

Q
ua

lit
y,

 L
ife

 
Cy

cl
e 

Co
st

 &
 

N
ei

gh
bo

rh
oo

d 
Q

ua
lit

y 

En
er

gy
Pl

us
 

N
/A

 
Si

m
ul

at
io

n 
&

 
A

lg
or

ith
m

-b
as

ed
 

M
et

ho
d 

G
A

 
M

A
TL

A
B 

 

T. Al Mindeel et al.                                                                                                                                                                                                                             



Renewable and Sustainable Energy Reviews 202 (2024) 114682

12

descriptions of the two most commonly used IAQ indices.  

• CO2 concentration levels have been widely used to evaluate IAQ in 
parts per million (ppm) units. International guidelines and standards 
such as those set by the World Health Organization, ASHRAE 

Standard 62.1, and EN 15251 suggest that CO2 levels should be 
maintained below 1000 ppm as a measure of acceptable IAQ 
[101–103].  

• The MAA is used to indicate the level of air freshness in naturally or 
mechanically ventilated buildings by calculating the average time 
the air has spent in a room, a single zone, or at occupant’s breathing 

Fig. 5. Number of optimization studies published between 2013 and 2022 and their classification based-on country and building type or setting.  
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zone. Lower values of MAA indicate fresher indoor air; thus, they are 
preferable to higher values. For a 2 m3 office space, for instance, it is 
recommended that the MAA be less than 125 s, with the maximum 
age of the air value not exceeding 250 s [92]. The MAA is typically 
determined using a user-defined computational fluid dynamics 
(CFD) program; however, it can also be calculated using Equation 
(4): 

∂τ

∂xj

=
∂

∂xj

[

Γρ
∂τ

∂xj

]

+ 1 (4)  

where τ is the age of air, xj is the j coordinate, and Γρ is the diffusion 
coefficient [34]. 

MAA typically assesses ventilation conditions inside buildings; thus, 
all optimization studies that employed MAA to evaluate IAQ examined 
the optimal system design and operation by investigating system-related 
design variables [34,37,42]. 

Fig. 9 shows the most common performance indicators utilized over 
the last ten years to evaluate the three optimization objectives. The 
amount of energy consumption, PMV, and CO2 concentration levels 
were the main indices to assess energy consumption, thermal comfort, 
and IAQ, presumably due to their standardization, direct connection to 

objective functions, data accessibility, and measurability. 

4.3. Optimization methods 

To perform multi-objective optimization, it is common practice to 
adopt a simulation-based optimization approach by coupling optimiza-
tion algorithms with energy simulations and/or CFD. The values of the 
design objectives are computed using a simulation tool, and the optimal 
design variables are obtained using optimization algorithms. Thus, it 
was expected that most reviewed studies utilized BPS tools in combi-
nation with optimization algorithms (65 %) or the technique of order 
preference by similarity to ideal solution (TOPSIS) optimization method 
(7 %) to tackle the multi-objective optimization problem, whereas 28 % 
relied solely on optimization algorithms (Fig. 10). 

Simulation and algorithm-based optimization: Building optimization 
is performed using either simulation-based tools, which act as fully 
functioning simulation-optimization platforms to solve multi-objective 
optimization problems (e.g., BeOpt and Opt-E-Plus), or standalone 
tools (e.g., GenOpt and MATLAB optimization toolbox), which are 
normally coupled with BPS software such as EnergyPlus, TRNSYS, and 
IDA ICE. As shown in Fig. 11, most reviewed studies (approximately 72 
%) favor the coupling approach, combining optimization tools with 
energy simulation software, CFD software, or both, which is the case for 
all studies aimed at optimizing thermal comfort and IAQ. 

Algorithm-based optimization: The multi-objective optimization 
process was performed using optimization algorithms and predictive or 
mathematical models without the use of simulation tools in 28 % of the 
studies. This approach is referred to in the literature as the inverse 
modelling approach and can be applied by defining the mathematical 
relationships between the inputs and outputs of the problem [15]. 

Simulation and TOPSIS-based optimization: Coupling simulation 
tools with the TOPSIS method has been the least used optimization 
method, adopted in 6 of the 82 optimization studies (7 % of publica-
tions). The TOPSIS method is a multi-objective decision-making tech-
nique that uses statistical analysis to make multiple-attribute decisions 
for optimizing design variables [36]. The optimal solutions in the 
TOPSIS method are obtained when they are closest to the positive ideal 
solutions, while also being the furthest away from the negative ideal 
solutions [104]. Based on the reviewed studies, CFD simulations were 
utilized in conjunction with the TOPSIS method to investigate and 
optimize ventilation systems such as the stratum ventilated heating 
system in Refs. [31,39]; stratified air distribution ventilation system in 
Ref. [48]; underfloor air distribution system in Ref. [47]; and impinging 
jet ventilation systems in Refs. [36,53]. 

4.4. Simulation & optimization software 

Building energy tools: A coupling technique that combines BPS and 
optimization tools has been the primary approach for optimizing energy, 
thermal comfort, and IAQ. This can be attributed to the ability of the 
simulation tools to provide a thorough and realistic image of building 
performance, thereby capturing the complexity of building systems and 
producing more accurate optimization outcomes. The reviewed studies 

Fig. 6. Common optimization topics in the reviewed works between 2013 
and 2022. 

Fig. 7. Common design variables in the reviewed works between 2013 
and 2022. 

Fig. 8. Main multi-objective functions in the reviewed works between 2013 and 2022.  
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that adopted this approach employed energy performance simulation 
tools, CFD simulation tools, or both.  

1. Energy modelling software: As illustrated in Fig. 12, 38 % of the 
studies predict building performance using popular energy simula-
tion software such as EnergyPlus (including various graphical user 
interfaces for its engine, e.g., DesignBuilder, Autodesk Ecotect, and 
ClimateStudio), TRNSYS, eQUEST, and IDA ICE. A comparative 
analysis of energy modelling tools reveals a blend of shared and 
distinctive features. EnergyPlus and TRNSYS demonstrated similar-
ities in their text-based input/output formats, validation, and 

Fig. 9. Common performance metrics adopted to evaluate energy, thermal comfort, and IAQ in the reviewed publications between 2013 and 2022.  

Fig. 10. Common optimization methodologies employed between 2013 
and 2022. 
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sustained support from vibrant user communities, particularly in 
terms of energy and thermal analysis, and their ability to model 
airflow networks and CO2 concentrations. EnergyPlus distinguishes 
itself with its research-grade status, provision of generic models, and 
seamless compatibility with third-party interfaces, whereas TRNSYS 
stands out for its user-friendly approach and proficiency in modelling 
transient systems. Alternatively, eQUEST is praised for its emphasis 
on user-friendliness and reliability, particularly in the context of 
LEED compliance modelling; however, it exhibits constraints in un-
dertaking detailed analyses of thermal comfort, airflow dynamics, 
and CO2 dispersion. IDA-ICE is another software that excels in con-
ducting a wide range of indoor climate and thermal comfort simu-
lations owing to its validation and use of a Neutral Model Format 
language. However, IDA-ICE has limitations when it comes to 
modelling airflow networks [105].  

2. Simplified resistance–capacitance (RC) network thermal modelling: 
The RC-network model, primarily developed in MATLAB, has been 
utilized in numerous optimization studies [18,22,59,63,73]. Unlike 
the conventional white-box modelling tools discussed earlier, this 
simplified thermal model is acknowledged for its computational ef-
ficiency while utilizing model simplification techniques to simulate 
energy and hygrothermal dynamics.  

3. Co-simulation techniques: For comprehensive modelling, co- 
simulation techniques between MATLAB and some renowned en-
ergy simulation software, such as EnergyPlus or TRNSYS, and a co- 
simulation between CONTAM and EnergyPlus have been 
employed, demonstrating the strategic integration of diverse simu-
lation tools, as demonstrated in Refs. [43,50,74]. 

CFD tools: As depicted in Fig. 12, approximately one-third of the 
studies (32 % of publications) utilize CFD models to predict building 
performance pertaining to thermal comfort and IAQ goals, or all three 
goals together. As shown in Fig. 13, the CFD tools ANSYS Fluent and 
Airpak are the most widely employed, accounting for 43 % and 25 % of 
the studies, respectively. 

Optimization tools: After running the BPSs, stand-alone optimization 
tools were used to optimize two or all three objective functions: energy, 
thermal comfort, and IAQ. Fig. 14 shows that most studies (32 % of 
publications), notably those conducted in recent years, use MATLAB to 
optimize all three goals. The extensive optimization capabilities of 
MATLAB have contributed to its popularity as an optimization platform. 
However, it can be difficult to master, and the execution speed can vary 
depending on the complexity of the optimization. Furthermore, the use 
of GenOpt and jEPlus + EA to perform the optimization process in 5 % 
and 4 % of the examined studies, respectively, is most likely related to 

Fig. 11. Classification of BPS tools utilized between 2013 and 2022.  

Fig. 12. Common building energy simulation tools employed in optimization studies between 2013 and 2022.  
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the increased use of GAs for multi-objective optimization. GenOpt stands 
out for its specialized design focused on EnergyPlus, which ensures ease 
of use and tailored functionality for simulating building energy dy-
namics. Similarly, jEPlus + EA offers seamless integration with Ener-
gyPlus, emphasizing user-friendly operation. However, the scope of 
these tools is primarily confined to EnergyPlus simulations, dis-
tinguishing them from the broader functionality of general-purpose 
programs like MATLAB. 

4.5. Analysis-coupled approach 

Prior- and/or post-analysis techniques may provide useful insights 
and improve the performance of multi-objective optimization processes. 
A preliminary analysis conducted prior to the optimization process can 
enhance the understanding of the significant factors influencing build-
ing performance and eliminate inconsequential factors, resulting in 
improved model reliability and validity. One such basic analysis is the 
sensitivity analysis, which is a technique for determining how changes 
in a model’s outputs can be attributed qualitatively and/or 

quantitatively to changes in a collection of input variables by evaluating 
different scenarios [106]. Post-processing analysis can also be beneficial 
for evaluating solution stability and robustness and offering a deeper 
understanding of the optimization problem and trade-offs between ob-
jectives, which in turn enhances the decision-making process and cre-
ates appropriate expectations and goals. 

However, this analysis-coupled strategy has not always been adopted 
in the studies examined. As shown in Fig. 15, approximately 38 % of the 
studies perform some form of prior- or post-analysis along with the 
optimization process. This allowed the generation of a random sampling 
of design variables or modelling datasets (e.g. Refs. [53,80,95]), 
studying the effect of parameters and determining the most influential 
ones (e.g. Refs. [49,69]), testing the correlation and identifying re-
lationships between parameters (e.g. Refs. [45,55,89]), and determining 
the optimal levels of parameters (e.g. Refs. [37,42]). The types of ana-
lyses that have been mostly performed in the compiled research are 
sensitivity analysis (16 %), sampling (9 %), regression analysis (5 %), 
analysis of variance (ANOVA) (2 %), correlation analysis (2 %), cau-
sality analysis (1 %), a combination of regression analysis and 

Fig. 13. The utilization of computational fluid dynamics (CFD) tools in optimization studies between 2013 and 2022.  

Fig. 14. Optimization tools utilized by the reviewed publications.  

Fig. 15. Types of analysis performed by the reviewed publications.  

T. Al Mindeel et al.                                                                                                                                                                                                                             



Renewable and Sustainable Energy Reviews 202 (2024) 114682

17

correlation (1 %), and a combination of regression analysis and sam-
pling (1 %). 

4.6. Optimization algorithms 

The most common optimization algorithms used over the last 10 
years were GAs and non-dominated sorting genetic algorithms (NSGA-II; 
37 %), PSO algorithms and non-dominated sorting-based particle swarm 
optimization algorithms (NSPSO; 9 %), hybrid algorithms (9 %), control 
algorithms (9 %), the scalarization method (6 %), and the Taguchi 
method (6 %), as shown in Fig. 16. Studies that performed optimization 
without using a specific algorithm (7 % of the literature) employed 
simulation- and TOPSIS-based optimization approaches, as discussed in 
Section 4.3. The following are brief descriptions of the top six types of 
optimization algorithms and their applications in the reviewed 
literature.  

1. GAs are inspired by the natural selection process and are founded on 
the Darwinian principles of biological evolution and the survival of 
the fittest [34,107]. For GA, data evolution begins by transforming 
the data population into a new generation with higher average 
fitness values that are closer to the optimal results. Each generation is 
evaluated, and when the data fails to satisfy the optimization crite-
rion, a new population of data will be generated using three GA 
operators: selection, crossover, and mutation. The procedure for 
evaluating and generating the data is repeated until the evaluation 
criteria are satisfied [28,92]. Accordingly, and as it is not necessary 
to express the objective function, variables, and constraints analyti-
cally, multi-objective GAs appear to be the most preferred optimi-
zation method for the coupling approach between the BPS and 
optimization. GA-based optimizations were coupled with simulation 
tools in 65 % of the reviewed studies. For instance, CFD simulations 
were employed in combination with GAs in Refs. [34,44,96]; 
whereas energy simulations and GA-based optimizations were per-
formed in Refs. [25,33,69]. However, other studies have relied on an 
inverse modelling approach that uses predictive mathematical 
models to simulate indoor environmental conditions or systems op-
erations as reported in Refs. [15,71,91]. 

The NSGA-II, an advanced meta-heuristic version of the GA, is 
developed using non-dominated sorting, sharing, and crowding distance 

methods, which demonstrated higher computational and search effi-
ciency than other GA methods [108]. The NSGA-II was used in 16 % of 
the reviewed literature, indicating its notable popularity in optimization 
studies, particularly in recent years (e.g. Refs. [46,49,50,80]). The 
reviewed work utilizing NSGA–II–based optimization was performed in 
various types of buildings; however, NSGA-II was always coupled with a 
simulation tool, principally with energy simulation software (in 77 % of 
studies). MATLAB and jEPlus + EA optimization tools were widely used 
(in 77 % of studies) to perform multi-objective optimization using the 
NSGA-II. 

The review shows that GAs are the most popular non-gradient-based 
algorithms, exhibiting unparalleled versatility and the capability to 
handle a wide spectrum of complex, nonlinear, and multimodal opti-
mization problems across diverse domains. Given their robustness and 
universal applicability, GAs are considered powerful search tools with 
higher computational efficiency. GAs have also demonstrated an 
enhanced probability of generating optimal solutions, particularly when 
coupled with CFD simulations to optimize indoor environments. Addi-
tionally, the integration of GAs with artificial neural networks (ANN) 
allows for a comprehensive exploration of the global optimum within a 
parametric search space.  

2. PSO algorithms, used in approximately 9 % of the reviewed studies, 
are ranked second to GAs. These algorithms use intelligent tech-
niques inspired by nature to address a wide range of complex engi-
neering problems. A particle in PSO represents a potential solution 
and has two vectors: location and a velocity. By continuously 
modifying the velocity vector, a particle approaches its best local 
position. The best global position can then be obtained using the 
weights and acceleration constants [85]. For multi-objective opti-
mization applications, a more advanced version of the algorithm was 
developed by introducing a non-dominated sorting method in which 
the personal and the global best selections were updated for a better 
distribution of solutions along the Pareto-optimal Front. The NSPSO 
algorithm was employed in three studies (4 % of the reviewed work) 
to optimize energy consumption, thermal comfort, and IAQ in a 
typical and a train cabin [21,26,32]. However, other studies (5 % of 
the reviewed work) preferred to utilize the original version of the 
algorithm (i.e., PSO) [51,85,87,93]. 

Similar to GAs, PSO algorithms have demonstrated their capabilities 

Fig. 16. Common optimization algorithms used in reviewed literature.  
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in solving nonconvex and multimodal problems, offering speed, accu-
racy, and faster convergence. As PSO requires less memory and is user- 
friendly, it has been particularly effective in optimizing HVAC design 
when paired with CFD simulations. Moreover, the integration of PSO- 
CFD methods with predictive models and data mining techniques, 
such as neural networks (NN), shows promising potential for accurately 
portraying system performance in response to various design 
parameters.  

3. Hybrid algorithms have been developed to enhance the performance 
of optimization algorithms by combining two or more algorithms. 
Developing a hybrid optimization algorithm by leveraging the 
strengths and overcoming the limitations of individual algorithms is 
a promising approach to accelerate convergence, enhance solution 
quality, boost robustness, and manage challenging optimization 
problems better. Efforts to develop new hybrid approaches and 
investigate new combinations of optimization techniques to solve 
more complex problems have been vividly captured in the reviewed 
literature and may still be an active area of research in the future. 
The use of hybrid optimization algorithms was reported in 9 % of the 
reviewed works to achieve optimization objectives through opti-
mized control schemes (e.g. Refs. [64,66,67]), building construction 
materials [76], or occupant behavior [98]. As highlighted in recent 
studies, hybrid algorithms consistently outperform traditional opti-
mization techniques [64,67]. This review also highlights their 
enhanced efficacy and superior performance across diverse applica-
tions, including residential, educational, commercial, and smart 
buildings. 

4. Control algorithms and methodologies have been explored to opti-
mize the control schemes for HVAC systems in commercial settings. 
The control input devised by control algorithms is usually deter-
mined by measurements or predictions of indoor environmental 
parameters, as in Refs. [54,72], or together with occupancy infor-
mation, as in Refs. [18,22,40,73]. Conventional control algorithms, 
such as rule-based feedback controllers, are cost-effective and oper-
ationally comparable to their more sophisticated model predictive 
control counterparts [18,22,73]. However, intelligent control algo-
rithms, such as fuzzy model predictive controls, demonstrate notable 
efficacy in enhancing energy efficiency and indoor environmental 
conditions [72]. Considering the limitations of model-based ap-
proaches, particularly their dependence on specific building envi-
ronments, there has been a growing inclination toward model-free 
methods. By leveraging learning-based techniques, such as deep 
reinforcement learning [40], these model-free methods hold signif-
icant potential for integration into HVAC control strategies, offering 
adaptability to diverse and dynamic operational contexts.  

5. The scalarization method is a deterministic optimization method that 
uses a scalarization function to convert a multi-objective optimiza-
tion problem into various single-objective problems (e.g. Ref. [17]). 
The weighted sum approach is a common scalarization technique 
that primarily aggregates single objective functions after multiplying 
each by a weighting coefficient. The weighted sum approach was 
used to optimize the energy consumption and thermal comfort of 
various types of buildings [74] and to optimize an office building’s 
energy consumption, occupants’ thermal comfort, and IAQ [59,63].  

6. The Taguchi method, or factorial design, is a powerful optimization 
technique based on the design of experiment approach. Investigating 
all possible scenarios for a full factorial design requires an assessment 
of various design variables and their possible values, which can 
result in multiple experiments. The number of experiments required 
for optimization can be reduced by determining the most significant 
operational parameters via sensitivity analysis and proposing a set of 
orthogonal arrays representing the number of factors and their levels 
[109]. Although this method has a wide range of applications, 
optimizing the operating characteristics of a ventilation system ap-
pears to be the main use of this algorithm. For example, studies have 

considered optimizing a mixed-mode ventilation system [38]; an 
underfloor air distribution system [37,42]; and an impinging jet 
ventilation system [29,41]. In addition, all studies performed a 
sensitivity analysis using either signal-to-noise (S/N) ratio analysis 
[37,42]; ANOVA [29]; or both [38,41] to identify significant vari-
ables and determine the optimal level of each variable. 

4.7. Decision-making methods 

Two processes, optimization and decision-making, are required to 
solve a multi-objective optimization problem. The sequence in which 
these are completed determines the method utilized to solve the opti-
mization problem, whether it is a Pareto Front, weighted sum approach, 
or another. When the decision-making process occurs before optimiza-
tion, as in the weighted sum approach, the order and weight of each 
objective function are determined and the problem is transformed into a 
single-objective optimization problem. This indicates that the weighted 
sum approach yields a single solution for each set of weights. In contrast, 
optimization prior to the decision-making process is more common, and 
a range of optimal solutions is obtained on a trade-off curve known as 
the Pareto Front, reflecting the best compromise between the optimi-
zation objectives [16]. According to the Pareto Optimality concept, a 
solution is considered optimal if no alternative improves one of the 
objectives without worsening at least one other objective [2]. 

Fig. 17 shows that Pareto optimality was used in approximately 35 % 
of the reviewed studies, with the majority concentrating on energy and 
thermal comfort, or all three goals. However, the number may be higher, 
given that approximately 24 % of the reviewed articles failed to specify 
the decision-making process used for multi-objective optimization. 
Approximately 15 % of the publications used weights to facilitate the 
decision-making process, most of which involved energy, thermal 
comfort, and IAQ optimization. This was primarily accomplished using a 
simulation and TOPSIS-based optimization method. Some statistical 
analysis techniques have also been employed for decision-making, such 
as S/N ratio analysis in Refs. [37,38,42]; Pearson Correlation analysis in 
Refs. [33,98]; regression analysis in Ref. [35]; and ANOVA in Ref. [29]. 

4.8. Artificial intelligence & machine learning prediction approaches 

The enormous computational cost of optimization studies that 
compute all possible solutions in a very large solution space is time 
intensive when more than one objective is targeted. Learning-based 
techniques have been used to accelerate the exploration of the design 
space and reduce computational burden without compromising the ac-
curacy of the results. These techniques serve as surrogate models that 
mimic the behavior of the original model while accelerating time- 
consuming simulations. Accordingly, 18 of the 82 publications 
(approximately 22 % of the reviewed studies) included learning-based 
prediction techniques in their optimization research, most of which 
were optimizing energy, thermal comfort, and IAQ (Figs. 18 and 19). 
Half of those studies, predominantly over the last few years, used NN to 
predict the values of the design objectives and reduce the computational 
cost (e.g. Refs. [28,34,40,52,56]). The NN prediction method is a ma-
chine learning (ML) process inspired by biological neurons in the human 
brain. Common types of NN using the feed-forward learning process 
have been adopted in the reviewed literature, including multi-layer 
perceptron NN in Ref. [87], multi-input multi-output multi-layered 
perceptron NN in Ref. [80], one-dimensional convolutional NN in 
Ref. [83], and extreme learning machine in Ref. [45]. 

Furthermore, powerful estimation algorithms that act as observers 
have been incorporated in some optimization studies to enhance the 
data prediction, smoothing, and noise removal performance. For 
example, the Kalman filter and extended Kalman filter were used in Refs. 
[15,18,22,73] to filter noise and uncertainties, whereas the Alpha Beta 
filter was utilized [65] for estimation and smoothing, both of which 
were performed to improve the accuracy of the predictions. Moreover, 
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the fusion of intelligent techniques with other common advanced tech-
niques has shown remarkable capabilities in reducing the computational 
cost of optimization. Examples of the application of this integrated 
approach include combining ANN and fuzzy logic, as shown in Ref. [93], 
ANN and response surface methodology in Ref. [53], feed forward back 
propagation NN and Kalman filter in Ref. [62], NN and nonlinear 
autoregressive exogenous in Ref. [51]. This demonstrates how the field 
of multi-objective optimization research has been significantly impacted 

by the use of AI/ML prediction techniques. However, as the field of 
predictive modelling and optimization develops and these cutting-edge 
methods are explored further, this ongoing advancement will un-
doubtedly yield more realistic and effective solutions for 
high-performance sustainable buildings. 

5. Conclusions and future research directions 

A comprehensive overview of the landscape of BPO research tar-
geting key sustainability goals (i.e., reduced energy usage, improved 
IAQ, and thermal comfort) is presented in this review by examining the 
literature published between 2013 and 2022 (82 publications). This 
review systematically analyzes and discusses the existing optimization 
approaches, objective functions, performance indicators, tools, algo-
rithms, decision-making methods, analyses, and prediction techniques, 
providing a clear picture of the latest research movements, advance-
ments, and ways to move forward. 

The reviewed work showed notable interest in optimizing energy 
consumption, thermal comfort, and IAQ collectively, rather than tar-
geting a pair of objectives, reflecting a more comprehensive approach to 
conducting sustainable building research. Previous studies commonly 

Fig. 17. Common decision-making methods employed between 2013 and 2022.  

Fig. 18. Common AI/ML prediction approaches adopted between 2013 
and 2022. 

Fig. 19. Number of studies adopting AI/ML prediction approaches between 2013 and 2022 based on optimization objectives.  
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used the following key performance indices: energy consumption, PMV, 
and CO2 concentration levels, as they are practical, comparable, and 
clearly connected to the key optimization objectives. However, the 
primary knowledge gaps remain unresolved. For instance, as most 
research has focused on office and residential buildings, more research 
on other commercial, educational, and public buildings is needed. 
Addressing research gaps concerning building- and occupancy-related 
variables and examining their association with the three optimization 
goals of reduced energy use, enhanced thermal comfort, and IAQ are 
also warranted, particularly because most optimization studies have 
focused on specific systems and/or environmental variables to address 
the optimization problem. 

From a methodological outlook, studies in the BPO field have pro-
gressively experimented with various optimization algorithms, hybrid-
ization approaches, data-driven models, and testing new methodologies. 
The coupling approach between BPS and optimization tools has been the 
primary optimization method adopted in the literature. Only 38 % of the 
reviewed studies adopted an analysis-coupled approach. Nevertheless, 
techniques such as sensitivity analysis that were utilized before or after 
the optimization process can greatly enhance the ability of decision 
makers to respond more intelligently to the dynamic and complex 
problems of building environments. This review also demonstrates the 
primacy of evolutionary algorithms, specifically GAs and NSGA-II, in 
optimizing building energy consumption, thermal comfort, and IAQ 
owing to their universal use and ability to handle multi-criteria prob-
lems that require a population of solutions. Although the use of AI 
prediction techniques in the reviewed studies was limited to only 21 %, 
the application of learning and prediction-based techniques has grown 
in popularity in last few years and is expected to continue evolving with 
the rapid development seen today in the fields of AI and ML technolo-
gies. As the potential of AI/ML prediction techniques in multi-objective 
optimization research has not yet been completely realized, this presents 
a promising area for further research. Hence, methodological optimi-
zation approaches are expected to evolve further in tandem with these 
emerging advanced technologies. 

Although this review provides an in-depth examination of building 
optimization research, certain limitations must be acknowledged such as 
the consideration of all indoor environmental quality components, 
namely, thermal comfort, IAQ, visual comfort, lighting quality, and 
acoustic quality, as optimization targets that could provide a broader 
and more thorough analysis of the sustainable building optimization 
research. However, owing to the subject’s breadth and its evolving and 
dynamic nature, it was necessary to focus on studies published in the last 
decade with three primary optimization targets to acquire representa-
tive conclusions. Thus, this review offers a valuable foundation for 
future research in which other indoor environmental quality compo-
nents are incorporated as objective functions. 
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