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A B S T R A C T

The economic viability of solar power has led to widespread adoption in homes and businesses. However, its
intermittent nature requires integration with other renewables and storage solutions to achieve peak efficiency.
This study delves into the in-depth review and analysis of mathematical modeling for determining the optimum
capacity of solar power plants and their combination with the other sources based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) method. The main contributions of this research
include a) Presenting the most commonly used variables for optimizing PV-based combination sources in the
literature. b) Utilizing text mining on a large database in addition to the PRISMA model to increase the
comprehensiveness of the results. c) Presenting all the common objective models in the literature, and d) Con-
ducting a comprehensive comparison of solving techniques. This research provides valuable insights into the
status and development trends in optimal sizing for PV energy systems by providing future direction in the
renewable sources combination area.

Nomenclature and abbreviations

ph Battery capacity (kWh) JA Jaya Algorithm
Pb,im Power import of the battery

(kW)
LCC Life Cycle Cost

Pb,ex Power Export of the battery
kW)

LCOE Levelized Cost of Energy

Pb,in Available input power of the
battery (kW)

LHC Levelized Hydrogen Cost

Pb,out The Available output power
of the battery (kW)

LOEE Loss of Energy Expected

Pe Power export limitation (kW) LOLE Loss of Load Expected
Pp Power generation of the

photovoltaic unit
LOLP Loss of Load Probability

Pg Total generated power (kW) LP Linear Programming
Pd Demand Power (kW) LPSP Loss of Power Supply

Probability
Px Curtailed Power (kW) MBA Mine Blast Algorithm
Pim Power imported from the

grid (kW)
MCS Monte Carlo Simulation

Pex Power Exported to the grid
(kW)

MDE Multi-Objective Differential
Evolution

Pw Power generation of the wind
turbine

MGWO Multi-Objective Grey Wolf
Algorithm

ABC Artificial Bee Colony MILP Mixed Integer Linear
Programming

(continued on next column)

(continued )

ACO Ant Colony Optimization MINLP Mixed Integer Nonlinear
Programming

ACS Total Annual Cost MLUCA Multi-Objective Line-Up
Competition Algorithm

AEFA Artificial Electric Field
Algorithm

MOP Multi-Objective
Optimization

AEO Artificial Ecosystem
Optimization

MPSO Multi-Objective PSO

ALO Antlion Optimizer MSSA Mult-objective Salp-Swarm
Algorithm

ANN Artificial Neural Network NB Number of Battery
BAT Bat Algorithm NM Nelder-Mead Algorithm
BBO Biogeography-Based

Optimization
NPC Net Present Cost

CE Carbon Emission NPO Nomadic People Optimizer
COA Coyote Optimization

Algorithm
PC Purchase Cost from Grid

COE Cost of Energy PL Power Loss
CS Cuckoo Search PP Payback Period
CSO Crow Search Algorithm PSO Particle Swarm

Optimization
DA Deterministic Algorithm PV Photovoltaic
DE Differential Evolution RE Revenue
DEE Curtailed/Excess Energy RF Renewable Fraction
DG Diesel Generator RI Reliability Index
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(continued )

DP Dynamic Programming ROI Return On Investment
EE Embodied Energy SA Simulated Annealing
ES Energy Storage SO Stochastic Optimization
FA Firefly Algorithm SOA Seagull Optimization

Algorithm
FC Fuel Consumption SSO Social Spider Optimizer
FFO Fruit Fly Optimization TAC Total Annual Cost
FPO Flower Pollination Algorithm TCC Total Capital Cost
GA Genetic Algorithm TLBO Teaching Learning-Based

Optimization
GEI Grid Electricity Import TS Tabu Search
GWO Grey Wolf Algorithm UL Unmet Load
HOMER Hybrid Optimization

Multiple Energy Resources
VD Voltage Deviation

HS Harmonic Search WOA Whale Optimization
Algorithm

ICA Inspired Coevolutionary
Algorithm

WT Wind Turbine

1. Introduction

For many decades, the majority of electricity generation relied on
fossil fuels. However, various factors have led to a global energy crisis
and exacerbated environmental issues [1]. Renewable energy sources
have become increasingly popular in recent years due to concerns about
climate change, the environmental impact of conventional energy
sources, and the diminishing availability of fossil fuel [2]. As illustrated
in Fig. 1, the share of renewable sources in newly installed power plants
worldwide has increased from 15 % in 2002 to 83 % in 2022, and their
share of the total installed capacity globally is now approximately 40 %
[3].

Among all renewable sources, solar-related sources have been the
most widely adopted in recent years. Fig. 2 illustrates the total installed
capacity of renewable sources between 2013 and 2022, as well as newly
installed energy sources in 2022 by different technologies. Based on
these results, more than 60 % of the newly installed capacity of
renewable sources of energy in 2022 was from Photovoltaic (PV) sys-
tems [4].

Residential rooftop PV systems are increasing due to decreases in
installation costs and government incentives [5,6], to the extent that the
PV penetration rate in detached residential housing in some Australian
states has reached 46 % in 2023 (Fig. 3). Fig. 3 shows that Australian
households have tended to invest more in larger PV systems in recent
years compared to previously.

The increase in PV penetration rate offers several advantages to both
households and society, as it does not directly produce greenhouse gases
or other harmful pollutants, thereby reducing the negative impact on the

environment and public health [7]. In addition to its environmental
benefits, PV contributes to energy security by enabling localized and
distributed power generation, which reduces reliance on remote or
foreign energy sources [8–10]. The growing use of renewable sources
has also led to the creation of new jobs in manufacturing, installation,
and maintenance, boosting local economies [1,11]. Another significant
benefit of PV technology is its potential to improve energy access. PV
systems can provide electricity and modern energy services to commu-
nities that lack access to centralized grid infrastructure. This improved
energy access can yield extensive socioeconomic benefits, empowering
communities and fostering their development [12–14].

Besides the mentioned advantages, PV comes with some disadvan-
tages. As the output of PV-based plants is dependent on weather con-
ditions, it exhibits high fluctuations, making them inconsistent and
unreliable [15]. Furthermore, large-scale PV installations require sig-
nificant amounts of land, which can lead to conflicts with other land
uses, such as agriculture and conservation [1].

Due to the fluctuation in PV output, it is impossible to balance energy
demand and supply with PV plants alone [3]. Therefore, combining PV
with other generation sources, such as Wind Turbines (WT) and diesel
generated energy is proposed in the literature. Besides generation
plants, energy storage systems must be used to enhance the reliability of
these systems [1].

Numerous models are presented in the literature to determine the
optimum combination of PV with other generation and storage sources.
Fig. 4, presents results from a search in Scopus using search terms
"Optim* AND PV AND (Siz* OR Hybrid OR Combin*) AND (Battery OR
Storage OR Wind OR Diesel)" indicating the increasing research in this
area.

2. Methodology

A comprehensive review was conducted on the optimization of
combined renewable energy sources based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) method
presented in Fig. 5 [16]. The PRISMA method comprises four stages:
Identification, Screening, Eligibility, and Inclusion. In the first step, by
searching keywords in the titles, abstracts, and keywords of articles in
Scopus and Web of Science 8537 and 7774 articles were selected,
respectively. Further refinement was made by searching titles only,
which narrowed the records to 619 in Scopus and 449 inWeb of Science.
Filtering by the year of publication (post-2010) resulted in 585 records
from Scopus and 422 fromWeb of Science. The document type was then
restricted to articles, and the language filter was set to English, resulting
in leaving 294 articles from Scopus and 248 from Web of Science. An

Fig. 1. Annual power capacity expansion, 2002–2022 [3].
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additional 61 articles were selected using the snowball approach via
ConnectedPapers.com. After removing duplicate articles, the total
number of unique records was 375. Titles and abstracts were then
screened, further narrowing the pool to 183 records. Of these, 114 ar-
ticles were selected after reading them fully. These 114 articles, sum-
marized in Table 1, were used in this research for statistical analysis. To
validate these results, they were compared with the outcomes of text
mining for all 375 articles extracted at the end of the identification stage.

Fig. 6 presents the publishers of selected articles. Energy journals
have a significant presence, with "Energy" leading at 13 papers, followed
by "Renewable Energy" with 12, and "Solar Energy" with 10 papers. The
most cited papers are presented in Fig. 7, publications in the dataset
have been cited a total of 13,440 times, with an average citation rate of
114 citations per paper. The highest-cited paper, by ZHOU W. in 2010,
has been cited 741 times, significantly more than the average citation
rate of 114 per paper [17].

The output of PV system fluctuates significantly during the day due
to their strong dependence on solar geometry and meteorological factors
[18]. Additionally, the absence of PV generation at night makes it
challenging to balance energy consumption and generation using PV
alone. To address these limitations and create a sustainable energy
generation system that meets demand, PV is often combined with other
energy sources and storage technologies. Numerous models have been
proposed in previous research to determine the best combination for
different countries. Fig. 8 illustrates the distribution of these articles
across countries. Thirty four countries were included, with Iran being
the most studied country with 18 articles, followed by China and India,
each with 9 articles. Regarding the type of grid connection, Fig. 9 shows
the proportions of grid-connected and off-grid scenarios discussed in the
articles. The findings suggest that the optimal combination of energy
facilities is primarily determined for stand-alone systems. Four articles
evaluate both grid-connected and off-grid scenarios to compare their

Fig. 2. Total and Newly Installed Capacity (in GW) of Renewable Energy Sources in 2022 around the world [4].

Fig. 3. PV rooftop penetration statistics in Australia.

Fig. 4. Number of publications on the combination of PV with other sources between 2002 and 2023.
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outcomes including [19–22]. In the case of stand-alone systems, opti-
mization is mainly conducted for microgrids, while for grid-connected
scenarios, optimal sizing is most often assessed for residential buildings.

From another perspective, Fig. 10 presents the proportion of case
studies in the articles. While almost half of the studies focus on micro-
grid cases such as islands, villages, or rural areas, 38 % of the articles
determined the optimum combination of sources for buildings including
residential, commercial, and offices. Additionally, 5 % of articles
consider the demand for universities and campus areas. The remaining
9 % aimed to determine the optimum combination of sources for other
cases such as farms, police stations, and ships.

The selection of a subset of articles may lead to potential errors and
biased results, with some criteria possibly being omitted from the
evaluation process. Although it is not feasible to address every concept,
criterion, and assumption within this context, efforts have been made to
minimize the risk of bias. To mitigate this risk, text mining was per-
formed on a large number of articles. This approach ensures a more
comprehensive evaluation by incorporating a broader range of infor-
mation, thereby reducing the likelihood of missing critical criteria and
assumptions.

To evaluate and encompass all key concepts in optimizing the com-
bination of energy sources and reduce potential error, the essential
criteria were first extracted from the selected articles. Subsequently, a
text mining model was applied to a broad collection of articles to verify
these criteria, ensuring comprehensive coverage of the main concepts in
the optimal source combination. The text-mining procedure is illus-
trated in Fig. 11.

This approach begins with extracting primary keywords from ab-
stracts, keywords, and titles of the articles. A word cloud is then created

based on the frequency of these words. Next, a list of abbreviations,
acronyms, and variant spellings of relevant concepts (such as "stand-
alone" and "off-grid") is compiled and consolidated according to the
review’s perspective. The refined dataset is then used to generate the
word cloud. The cleaning and verification process is conducted itera-
tively to ensure the thoroughness and accuracy of the dataset.

Figs. 12 and 13 present the results of the text mining process as a
word cloud and word map depicting the most commonly used termi-
nologies in related papers.

Based on the review and text-mining results, a range of criteria for
comparing the articles, as presented in Fig. 14, was extracted. These
criteria include the grid connection type, including grid-connected (on-
grid), off-grid (stand-alone), or both. The decision variable, based on the
combination of facilities, can vary among options such as PV/ES, PV/
ES/DG, PV/WT/ES, etc. Storage types are categorized into chemical,
electrochemical, mechanical, and thermal. Case studies cover micro-
grids on islands or rural areas, residential and non-residential buildings,
campuses, universities, and other entities such as farms or police sta-
tions. Another criterion for comparison is the objective function
encompassing economic, reliability, environmental, technical, and so-
cial aspects, as well as their combinations. Besides these criteria, solving
techniques are categorized into five groups: traditional models, single
heuristic algorithms, combined heuristic algorithms, software-based
methods, and hybrid models. Detailed information about the selected
papers is presented in Table 1. However, the focus of this research, as
detailed in Fig. 15, is limited to the mathematical models, including
decision variables, objective functions, model parameters and assump-
tions, and solution techniques. The main contribution of this study is
providing an in-depth review of the mathematical models (including

Fig. 5. Research flowchart.

O. Motamedisedeh et al. Renewable and Sustainable Energy Reviews 207 (2025) 114935 

4 



Table 1
Details of reviewed articles.

Row Reference Year Type of Solving
Techniques

Solving
Techniques

Combination
Type

Type of Objective
function

Objective
function

Country Location Grid
Connection

1 [23] 2015 Software Based HOMER PV/ES/DG Economic LCOE Campus &
Institution

stand-alone

2 [24] 2016 Single Heuristic
Algorithm

PSO PV/ES/DG Economic +
Reliability +

Environmental

TAC + LOLP
+ CE

Algeria Microgrid stand-alone

3 [25] 2020 Single Heuristic
Algorithm

MPSO PV/WT/ES Economic TCC China Microgrid stand-alone

4 [26] 2019 Software Based HOMER PV/WT/ES/
DG

Economic +
Environmental

NPC + CE Ethiopia Microgrid stand-alone

5 [27] 2019 Single Heuristic
Algorithm

FA PV/WT/ES Economic COE India Microgrid stand-alone

6 [28] 2018 Single Heuristic
Algorithm

CS PV/WT/ES Economic NPC Microgrid stand-alone

7 [29] 2019 Software Based HOMER PV/ES/DG Economic +
Environmental

NPC + COE
+ CE

Buildings

8 [30] 2021 Single Heuristic
Algorithm

PSO PV/WT/ES Economic +
Technical

COE + RF Algeria Buildings stand-alone

9 [31] 2020 Traditional
Methods

MILP PV/ES Economic TAC + ROI Australia

10 [32] 2019 Single Heuristic
Algorithm

GA PV/ES Economic TAC Australia Buildings Grid-
connected

11 [33] 2015 Combined
Heuristic
Algorithm

NSGA-II +
MPSO

PV/ES/DG Environmental CE China Other stand-alone

12 [34] 2020 Combined
Heuristic
Algorithm

JA + TLBO PV/WT/ES Economic TAC Iran stand-alone

13 [35] 2019 Combined
Heuristic
Algorithm

CS + HS + SA PV/WT/ES Economic LCC Iran Microgrid stand-alone

14 [36] 2016 Single Heuristic
Algorithm

GWO PV/WT/ES Economic TAC Iran stand-alone

15 [37] 2014 Single Heuristic
Algorithm

HS PV/WT/ES/
DG

Economic TAC Iran Microgrid stand-alone

16 [38] 2015 Single Heuristic
Algorithm

ICA PV/WT/ES/
DG

Reliability +

Economic
LPSP + ACS China stand-alone

17 [39] 2016 Hybrid Models PSO + MCS PV/WT/ES Economic TAC Iran stand-alone
18 [40] 2015 Single Heuristic

Algorithm
PSO PV/WT/ES Economic TAC Iran Buildings stand-alone

19 [41] 2013 Combined
Heuristic
Algorithm

CS + HS + SA PV/WT/ES Economic TAC USA stand-alone

20 [42] 2014 Single Heuristic
Algorithm

ABC PV/WT/ES Reliability +

Economic
LPSP + TAC Iran stand-alone

21 [43] 2017 Combined
Heuristic
Algorithm

NSGA-II +
MPSO

PV/WT/ES Reliability +

Economic
LPSP + LCC China stand-alone

22 [44] 2014 Combined
Heuristic
Algorithm

PSO + SA PV/WT/ES Economic LCC China stand-alone

23 [45] 2018 Combined
Heuristic
Algorithm

CS + NM PV/ES Reliability PL India stand-alone

24 [46] 2015 Single Heuristic
Algorithm

ACO PV/WT/ES Economic NPC Iran stand-alone

25 [47] 2017 Single Heuristic
Algorithm

MLUCA PV/WT/ES/
DG

Economic +
Environmental

TAC + CE China stand-alone

26 [48] 2010 Single Heuristic
Algorithm

SA PV/WT/ES Economic TAC Turkey Campus &
Institution

stand-alone

27 [49] 2012 Combined
Heuristic
Algorithm

SA + TS PV/WT/ES/
DG

Economic LCOE Greece Buildings stand-alone

28 [50] 2020 Combined
Heuristic
Algorithm

HS + SA PV/ES/DG Economic LCC Iran Microgrid stand-alone

29 [51] 2015 Combined
Heuristic
Algorithm

SA + FPO PV/WT/ES Reliability +

Economic
LPSP + TAC Iran stand-alone

30 [52] 2010 Single Heuristic
Algorithm

NSGA-II PV/WT/ES Economic +
Reliability

ACS + LPSP Senegal stand-alone

31 [53] 2012 Single Heuristic
Algorithm

GA PV/WT/ES Reliability LOLP Malaysia stand-alone

(continued on next page)
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Table 1 (continued )

Row Reference Year Type of Solving
Techniques

Solving
Techniques

Combination
Type

Type of Objective
function

Objective
function

Country Location Grid
Connection

32 [19] 2021 Single Heuristic
Algorithm

AEO PV/WT/ES Economic +
Reliability +

Technical

COE + LPSP
+ DEE

Egypt On/Off-grid

33 [20] 2020 Combined
Heuristic
Algorithm

BBO + PSO PV/WT/ES Reliability RI India On/Off-grid

34 [54] 2018 Traditional
Methods

DP PV/ES Economic RE Spain Grid-
connected

35 [55] 2016 Single Heuristic
Algorithm

BAT PV/WT/ES/
DG

Reliability +

Technical
PL + VD India Grid-

connected
36 [56] 2021 Combined

Heuristic
Algorithm

CSO + PSO PV/WT/ES Economic +
Reliability +

Technical

COE + LOLE
+ VD

Iran Grid-
connected

37 [57] 2018 Combined
Heuristic
Algorithm

PSO + GWO PV/WT/ES/
DG

Economic +
Environmental

TAC + CE Egypt Buildings Grid-
connected

38 [58] 2017 Single Heuristic
Algorithm

CS PV/WT/ES Economic +
Technical

TAC + GEI Algeria Other Grid-
connected

39 [59] 2014 Traditional
Methods

iterative PV/WT/ES/
DG

Reliability +

Economic
UL + NPC Buildings stand-alone

40 [60] 2018 Combined
Heuristic
Algorithm

GA + PSO PV/WT/ES Economic +
Reliability

NPC + LPSP Iran Micro-Grid stand-alone

41 [61] 2014 Single Heuristic
Algorithm

GA PV/WT/ES/
DG

Economic +
Environmental

LCOE +

NPC + CE
China Micro-Grid stand-alone

42 [62] 2015 Single Heuristic
Algorithm

PSO PV/WT/ES Economic LCC Iran Buildings stand-alone

43 [63] 2016 Single Heuristic
Algorithm

ACO PV/WT/ES/
DG

Economic TAC India Microgrid stand-alone

44 [64] 2013 Single Heuristic
Algorithm

GA PV/WT/ES/
DG

Economic NPC Syria Microgrid stand-alone

45 [65] 2020 Single Heuristic
Algorithm

SSO PV/WT/ES/
DG

Economic +
Reliability

COE + LPSP Kingdom of
Saudi Arabia

Microgrid stand-alone

46 [66] 2018 Single Heuristic
Algorithm

SA-CHS PV/WT/ES Economic LCC Iran Microgrid stand-alone

47 [67] 2016 Single Heuristic
Algorithm

NSGA-II PV/WT/ES/
DG

Economic +
Technical +
Environmental

LCC + DEE
+ CE

Nigeria Buildings stand-alone

48 [68] 2012 Single Heuristic
Algorithm

NSGA-II PV/WT/ES Reliability +

Environmental
LPSP + EE Buildings stand-alone

49 [69] 2014 Single Heuristic
Algorithm

ABC PV/ES Technical +
Economic

RF + LCC Egypt Microgrid stand-alone

50 [70] 2018 Software Based HOMER PV/ES/DG Economic +
Environmental

COE + NPC
+ CE

Bangladesh Microgrid stand-alone

51 [71] 2020 Traditional
Methods

MILP PV/WT/ES Economic TAC Other stand-alone

52 [72] 2018 Combined
Heuristic
Algorithm

HS + SA PV/WT/ES/
DG

Economic LCC Iran stand-alone

53 [73] 2020 Single Heuristic
Algorithm

PSO PV/WT/ES/
DG

Economic +
Technical

NPC + RF +

LCOE
Algeria Buildings stand-alone

54 [74] 2022 Software Based HOMER PV/WT/ES/
DG

Economic NPC India Microgrid stand-alone

55 [75] 2012 Single Heuristic
Algorithm

DE PV/WT/ES/
DG

Economic +
Reliability +

Environmental

NPC + UL +

CE
Buildings stand-alone

56 [76] 2022 Software Based HOMER PV/WT/ES Economic COE + LHC Oman Grid-
connected

57 [77] 2020 Single Heuristic
Algorithm

NPO PV/WT/ES/
DG

Economic +
Technical +
Environmental

LCC + DEE
+ CE

Iraq Buildings stand-alone

58 [78] 2020 Software Based HOMER +

QRod™+

PROSPER™

PV/WT/ES Economic NPC + LCOE stand-alone

59 [79] 2019 Single Heuristic
Algorithm

FPO PV/ES Economic TAC Egypt stand-alone

60 [80] 2020 Software Based HOMER PV/WT/ES/
DG

Economic +
Technical +
Environmental

NPC + RF +

COE + CE
Other stand-alone

61 [81] 2017 Single Heuristic
Algorithm

MPSO PV/WT/ES/
DG

Economic +
Reliability

LCOE +

LPSP
Sweden Microgrid stand-alone

62 [82] 2016 Traditional
Methods

LP PV/WT/ES Economic NPC stand-alone

63 [83] 2020 Hybrid Models SEVERAL
MODELS

PV/WT/ES Economic NPC stand-alone

(continued on next page)
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Table 1 (continued )

Row Reference Year Type of Solving
Techniques

Solving
Techniques

Combination
Type

Type of Objective
function

Objective
function

Country Location Grid
Connection

64 [84] 2011 Traditional
Methods

DA PV/WT/ES/
DG

Economic NPC – Microgrid stand-alone

65 [85] 2017 Combined
Heuristic
Algorithm

GA + PSO PV/WT/ES Economic NPC Buildings Grid-
connected

66 [86] 2018 Combined
Heuristic
Algorithm

HS + SA PV/WT/ES Economic LCC Iran Buildings stand-alone

67 [87] 2014 Traditional
Methods

DA PV/WT/ES Economic TCC + LCOE Tunisia Buildings stand-alone

68 [88] 2019 Single Heuristic
Algorithm

MCSO PV/ES/DG Reliability +

Economic
LPSP + NPC Iran stand-alone

69 [89] 2017 Single Heuristic
Algorithm

GA PV/ES Economic COE Switzerland Buildings Grid-
connected

70 [17] 2010 Traditional
Methods

SO PV/WT/ES Economic LCC Microgrid stand-alone

71 [21] 2019 Software Based HOMER PV/WT/ES Economic +
Technical

NPC + COE
+ RF

Bangladesh Microgrid On/Off-grid

72 [90] 2022 Single Heuristic
Algorithm

NSGA-II PV/WT/ES/
DG

Economic +
Environmental

NPC + COE
+ CE

Bangladesh Microgrid stand-alone

73 [91] 2017 Software Based HOMER PV/WT/ES Economic COE + NPC India Microgrid
74 [92] 2018 Traditional

Methods
LP PV/WT/ES Economic LCOE Buildings stand-alone

75 [93] 2016 Software Based HOMER PV/WT/ES Technical +
Reliability

NB + LPSP Oujda Buildings stand-alone

76 [94] 2018 Single Heuristic
Algorithm

MDE PV/WT/ES/
DG

Economic +
Reliability

COE + LPSP Saudi Arabia Buildings

77 [95] 2020 Single Heuristic
Algorithm

MGWO PV/WT/ES Economic +
Reliability +

Technical

LCOE +

LPSP + DEE
Rural Areas Other stand-alone

78 [96] 2016 Software Based HOMER PV/WT/ES Economic +
Environmental

COE + CE India Buildings stand-alone

79 [97] 2021 Software Based HOGA PV/WT/ES/
DG

Economic COE + NPC France Buildings stand-alone

80 [98] 2021 Single Heuristic
Algorithm

MPSO PV/WT/ES/
DG

Economic COE + NPC Kenya Microgrid stand-alone

81 [99] 2019 Single Heuristic
Algorithm

FPO PV/WT/ES Economic +
Reliability

NPC + LOEE
+ LOLE

Iran Microgrid stand-alone

82 [100] 2021 Single Heuristic
Algorithm

AEFA PV/WT/ES/
DG

Economic TAC Morocco

83 [101] 2020 Single Heuristic
Algorithm

WOA PV/WT/ES Economic COE Egypt Grid-
connected

84 [102] 2022 Single Heuristic
Algorithm

COA PV/ES/DG Economic +
Environmental

TAC + CE Hotan County Microgrid

85 [103] 2022 Software Based HOMER PV/WT/ES/
DG

Economic NPC Bangladesh Microgrid stand-alone

86 [104] 2020 Single Heuristic
Algorithm

SOA PV/WT/ES Economic LCOE China Grid-
connected

87 [105] 2019 Traditional
Methods

Numerical PV/ES Economic RE Finland stand-alone

88 [106] 2023 Traditional
Methods

MILP PV/ES Economic +
Reliability

COE + LPSP Saudi Arabia

89 [107] 2018 Single Heuristic
Algorithm

NSGA-II PV/ES/DG Economic LCOE Indonesia stand-alone

90 [108] 2020 Traditional
Methods

MILP PV/ES Economic +
Reliability

LCC + LPSP
+ PC

JKUAT Other Grid-
connected

91 [109] 2020 Combined
Heuristic
Algorithm

ABC + PSO PV/ES Economic COE India Buildings Grid-
connected

92 [110] 2020 Single Heuristic
Algorithm

MDE PV/WT/ES Reliability +

Economic
LPSP +

LCOE
China stand-alone

93 [111] 2018 Single Heuristic
Algorithm

NSGA-II PV/WT/ES Economic +
Reliability

COE + RI Tunisia stand-alone

94 [112] 2019 Single Heuristic
Algorithm

CS PV/WT/ES/
DG

Economic COE stand-alone

95 [113] 2021 Single Heuristic
Algorithm

ALO PV/WT/ES Reliability +

Economic
LPSP +

LCOE
Grid-
connected

96 [114] 2022 Single Heuristic
Algorithm

MSSA PV/WT/ES/
DG

Economic +
Reliability

COE + LPSP Algeria stand-alone

97 [115] 2019 Traditional
Methods

Numerical PV/ES Economic TAC Yemen stand-alone

98 [116] 2020 Single Heuristic
Algorithm

MOP PV/ES Reliability +

Economic +
Technical

LPSP + COE
+ RF

Egypt Microgrid Grid-
connected

(continued on next page)
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Table 1 (continued )

Row Reference Year Type of Solving
Techniques

Solving
Techniques

Combination
Type

Type of Objective
function

Objective
function

Country Location Grid
Connection

99 [117] 2016 Single Heuristic
Algorithm

MBA PV/WT/ES/
DG

Economic TAC Egypt Microgrid

100 [118] 2019 Single Heuristic
Algorithm

WOA PV/WT/ES Economic LCOE stand-alone

101 [119] 2019 Single Heuristic
Algorithm

NSGA-II PV/ES Economic +
Reliability

TAC + LPSP stand-alone

102 [120] 2017 Traditional
Methods

ANN PV/ES Technical GEI Buildings Grid-
connected

103 [121] 2014 Single Heuristic
Algorithm

MOP PV/WT/DG Economic +
Reliability

COE + RI stand-alone

104 [122] 2021 Combined
Heuristic
Algorithm

FA + HS PV/WT/ES Economic NPC

105 [123] 2016 Single Heuristic
Algorithm

FFO PV/WT/ES/
DG

Economic +
Environmental

TAC + CE Microgrid stand-alone

106 [124] 2018 Single Heuristic
Algorithm

NSGA-II PV/WT/ES Economic +
Reliability

TAC + LPSP Tunisia stand-alone

107 [125] 2022 Software Based HOMER PV/WT/ES/
DG

Economic +
Technical

NPC + COE
+ RF

Microgrid stand-alone

108 [126] 2018 Single Heuristic
Algorithm

NSGA-II PV/WT/ES Economic COE

109 [127] 2018 Traditional
Methods

DP PV/WT/ES/
DG

Technical +
Environmental

RF + FC +

CE
stand-alone

110 [128] 2016 Single Heuristic
Algorithm

PSO PV/WT/ES Economic TAC Grid-
connected

111 [129] 2017 Traditional
Methods

MINLP PV/ES Economic COE stand-alone

112 [22] 2022 Software Based HOMER PV/WT/ES/
DG

Economic NPC Thailand Microgrid On/Off-grid

113 [130] 2021 Software Based HOMER PV/ES Economic +
Environmental

LCOE + CE Campus &
Institution

Grid-
connected

114 [131] 2020 Single Heuristic
Algorithm

MPSO PV/ES Economic PP + LCC Buildings

Fig. 6. Publisher of the selected papers.

Fig. 7. Citation rate of articles.
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Fig. 8. Countries-based distribution of research.

Fig. 9. Proportion of articles in different grid connections for the combination of sources.
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decision variables, objective functions, parameters and assumptions,
and solving techniques) for determining the optimal combination of PV-
based renewable energy sources in both grid-connected and off-grid
scenarios across different locations.

3. Decision variables

The decision variables differ based on the facilities considered in the
combination models. Fig. 16 presents the proportion of facility combi-
nations in all the 114 articles. According to Fig. 16, PV/WT/ES and PV/
WT/ES/DG are the most common combinations in the evaluated models.
Additionally, ES is used alongside the generation sources in all the
reviewed papers except [121] which only considers the PV/WT/DG.

Considering the decision variable as xi where i ∈ (PV,WT,ES,DG), xi
can be an integer, continuous, or binary variable. In the integer case, the
capacities of each PV panel, WT, ES, and DG are predefined and the
model aims to find the optimal value of xi as the number of PV panels,
wind turbines, diesel generators, and battery storage [132–134]. To
reduce model complexity, the integer characteristic of xi, representing
the number of generation and storage sources, can be neglected. Simi-
larly, instead of defining the number of generation and storage sources
as decision variables, their capacities can be defined as continuous de-
cision variables in the model [135]. In some other research in the
literature, where different PV panels or battery types are considered,
binary variables are defined to select a specific type in the result.

3.1. PV/ES

PV-ES is one of the common combinations of PV systems for house-
holds suitable for both on-grid and off-grid setups [32]. The energy flow
configurations for these combinations are shown in Fig. 17. In the
grid-connected scenario, the demand can be met by PV, storage, or grid.
In the off-grid scenario, also referred to as stand-alone, Pim and Pex are
equal to zero, and energy shortages occur when demand exceeds the sum
of PV generation and stored energy in ES [129].

Fig. 18 depicts the energy at time t in both grid-connected and stand-
alone scenarios. In a basic grid-connected system, four scenarios may
occur as described below. However in an advanced system, where

storage degradation costs are managed, the energy flow should be
determined by another model [120].

- When the generated energy exceeds both the demand and the storage
capacity any surplus will be exported to the grid. In scenarios with
export limitations, exports are capped at specific daily or hourly
values, requiring the use of another model to determine optimal
export times.

- If the generated energy is greater than the demand but less than the
combined demand and available storage capacity, the battery will
store the surplus energy.

- When the generated energy is less than the demand but the stored
energy is sufficient to cover the shortfall, the battery will provide the
necessary energy.

- In cases where the shortfall between generated energy and demand
exceeds the stored energy, the battery will be fully discharged, and
the remaining demand will be met by grid supply.

In the stand-alone case, four different scenarios may occur.

- If the generated energy exceeds both the demand and the remaining
battery capacity, the battery will become fully charged, and the
excess energy will be discarded.

- When the generated energy is more than the demand but less than
the total demand and the remaining battery capacity, the battery will
charge without any energy being wasted.

- If the generated energy is less than the demand, yet the shortfall can
be covered by the stored energy, the battery will discharge to provide
the necessary power.

- When the combined total of generated and stored energy falls short
of the demand, the system will experience an energy shortfall.

Fig. 19-a and 19-b present the proportions of applications and types
of objectives in both grid-connected and off-grid scenarios of PV/EV
combination in different papers. Based on the result, the PV/EV com-
bination is usually used in buildings [89,109,120] and in cases with
small to mid-level demand with applications proposed equally in both
grid-connected and off-grid scenarios. In most cases economic consid-
erations are one of the objective functions and reliability issues are
commonly addressed in off-grid scenarios [69].

Fig. 10. Proportion of application of a combination of sources.

Fig. 11. Text mining process.

Fig. 12. Word cloud.
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Fig. 14. comparing the criteria.

Fig. 15. review farmwork.

Fig. 13. Word map.
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3.2. PV/ES/DG

Due to uncertainty in energy output from PV systems and the risk of
loss of load in off-grid cases, DG can be used as reserve sources to
enhance the system as shown in Fig. 20 [102]. Fig. 21 presents the
application of this combination in the reviewed papers as well as the
used objective functions. Based on Fig. 21 PV/ES/DG combination is
only used for off-grid scenario with environmental-related and eco-
nomic objective functions being considered in most cases [33,102].
Additionally, the PV/ES/DG combination is more frequently applied in
microgrid cases compared to other situations in the literature.

In one study [29], HOMER is used to identify the optimal

combination of PV/ES/DG for an office, resulting in configuration of
19.4 KW for PV, 21 kW for DG, and a 220 kWh battery, with the cost of
energy (COE) at 0.21 $/kWh and net present cost (NPC) at $110,191.
Another study employed HOMER to find the best mix of sources for a
stand-alone system in Bangladesh, achieving a combination of 73 kW
PV, 57 kW DG, and 387 kWh battery, with the COE at 0.37 $/kWh and
NPC at $357,284 [70]. Additionally, other studies [50,88], propose
optimal source combinations for stand-alone cases in Iran, featuring
capacities of 80 m2 PV, 8 kW DG, and thirty-three 155Ah batteries, and
115 kW PV, 54 kW DG, and a 14 kW fuel cell, respectively.

3.3. PV/WT/ES

Due to environmental concerns associated with DG, WT is often
favored in research over DG, in conjunction with PV and ES systems, to
enhance system reliability [121]. The energy flow in PV/WT/ES com-
binations is presented in Fig. 22, and its application is presented in
Fig. 23. Based on the results, such a combination is predominantly used
in stand-alone systems [34,36,39,41], with only three articles
comparing stand-alone and grid-connected scenarios. Given the
weather-dependent and stochastic nature of both PV and WT generation
rates, reliability indices are commonly used alongside economic factors
as objective functions in these studies [42,43,51,52].

Studies [40,46], and [62] each employed a single heuristic algorithm
to determine the optimal mix of PV/WT/ES for a stand-alone residential
building in Iran. Their findings were 6.24 kW PV, 2 kWWT, and 65 units
of 2.1 kWh batteries at a total annual cost of $4619; 9 kW PV, 1 kWWT,
and a 23.1 kWh battery with a total cost of $5652; and 4.93 kW PV, 4 kW

Fig. 17. The energy flow in the PV/ES combination.

Fig. 18. Energy flow.

Fig. 16. Proportion of combination of sources.

O. Motamedisedeh et al. Renewable and Sustainable Energy Reviews 207 (2025) 114935 

12 



WT, along with 63 units of 150 Ah batteries at a lifecycle cost of $68,
588, respectively. In a separate study [93], found that for Oujda, the
optimal system consists of 3.12 kW PV, 5 kWWT, and a 40 kWh battery,
with a COE of $0.375/kWh and an NPC of $37,818. For a stand-alone
microgrid in China [25], applied multi-objective PSO, resulting in a
combination of 13,786 kW PV, 3,750 kWWT, and 5,376 kW PHS, with a
COE of 0.2345. Another study in Egypt [101] determined an optimal
setup of 314 kW PV, 30 kW WT, and 2,504m3 PHS, with a COE of
$0.2173.

3.4. PV/WT/ES/DG

Increasing the demand values as well as uncertainty on the demand
patterns and generation rate of PV and WT, achieving a reliable system
solely with PV/WT/ES becomes expensive [37,97]. Therefore, DG is
used to reduce the cost while maintaining the same level of reliability
[47,61]. Fig. 24 depicts the energy flow in such a combination and
Fig. 25 presents its application in the selected papers. In 61 % of cases
such as [63–65,74], this combination is used for microgrids, primarily in
islands and rural areas, while in 35 % of cases including [67,73,77,97],
providing energy to stand-alone residential and commercial complexes

is suggested. All the papers used this combination in off-grid scenarios,
with some comparing the results to grid-connected situations. Moreover,
environmental and technical objectives are considered alongside eco-
nomic factors to determine the optimal configuration of this system.

4. Objective functions

In terms of objective functions, the models can be categorized into
two groups: single-objective models and multi-objective models [81]. In
a single-objective model, a specific objective function, such as mini-
mizing generation cost or carbon emission rate, is considered, and a
model is used to optimize that problem [123]. Hence, the applied model
usually generates a specific solution [64]. In multi-objective models, two
or more objective functions that may conflict with each other are
considered, producing a set of non-dominated solutions [90,116,136].
The proportion of objective types across various sources of PV-based
combination systems is presented in.

Fig. 19. Proportion of using PV/ES in a) different locations and b) objective functions.

Fig. 20. The energy flow in the PV/ES/DG combination.

Fig. 21. Proportion of using PV/ES/DG in a) different locations and b) objective functions.

Fig. 22. The energy flow in the PV/WT/ES combination.
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Fig. 26, showing that both single-objective and multi-objective
models are used almost equally. Among all the objective functions,
economic-related objectives are predominant: 89 % of single-objective
models focus on economic purposes, and in all multi-objective models,
at least one of the objectives is economic-related.

Based on the literature, five groups of objective functions, namely
reliability-based, economic-related, environmental-based, social-based,
and technical-based functions, and their combinations (in multi-
objective models) are discussed in the literature as presented in Fig. 27.

4.1. Economic-related indicators

The financial objectives regarding the project cash flow including
investment cost, maintenance, and operational cost, are among the most
commonly used objective functions. In this group of indicators, the
financial values of different scenarios are compared and the optimal one
is selected [137]. Fig. 28 shows the proportion of different
economic-related factors used in the reviewed papers, which indicates

that NPC [22,28,59,60,64,75,84,85,98,122] and the cost of electricity
(COE) [27,89,94,95,101,111,112,114,126] are the most used
economic-related objective function in the literature. Additionally, total
annual cost (TAC), which includes the purchasing cost, operation and
maintenance cost, and investment cost divided by the project life cycle,
is another commonly used objective function [37–39,48,58,71,79,100,
115,117,119,128].

TAC is simple, but not an ideal measure, especially for comparing
different projects with varying demands. In such cases, COE is a better
measure for comparing different plants even with different capacities
[138]. For countries with a high inflation rate, the result of Net Present
Value (NPV) is also used as an objective function to determine the
optimal combination of renewable sources [17,35,44,50,62,66,128,
131]. used life cycle cost (LCC) functions to optimize the number of PV
panels and the capacity of wind turbines for a gird-connected problem.
Levelized cost of energy (LCE) [49,87,110,113,118] and cumulative
saving (CS) are other financial functions used for determining the op-
timum combination [1,104,107,139].

4.2. Reliability-related indicators

The generation rate of PV varies throughout the year as it is related to
different external parameters such as incident solar radiation and sun
angle. Therefore, considering the reliability of the system to ensure the
demand coverage under various conditions is important [45,70].
Different reliability-based objective functions are considered mostly in
the off-grid cases to determine the optimum combination of sources.
Fig. 29 presents the proportion of reliability-based objective functions in
the literature, which shows loss of power supply probability (LPSP) is
the most commonly used reliability-based objective function with a
frequency of 65 % [53,140].

Loss of load expected (LOLE) [56] and loss of load probability (LOLP)
[24] are two other commonly used reliability-based indexes. LOLE
represents the expected number of hours per year when demand exceeds

Fig. 23. Proportion of using PV/WT/ES in a) different locations and b) objective functions.

Fig. 24. The energy flow in the PV/Wind/Diesel/Battery combination.

Fig. 25. Proportion of using PV/WT/ES/DG in a) different locations and b) objective functions.
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generation and is used to evaluate the required installed capacity based
on peak-period, while LOLP is used to evaluate the probability of
shortage during this time [24]. Other reliability-based objective func-
tions include deficiency of power supply probability (DPSP) [141], and
loss of energy expected (LOEE) [99].

4.3. Environmental-related indicators

Solar energy is clean and environmentally friendly, with its envi-
ronmental advantages being among its primary benefits. Fig. 30 presents
the proportion of environmental-related objective functions in the
reviewed papers, which shows minimizing Carbon Emission (CE) is a
common objective function to evaluate the positive environmental

impacts of source combinations [26,29,90,102]. Embodied energy (EE)
and fuel consumption [FC] are other commonly used
environmental-related objective functions in the literature [68,127].

4.4. Technical indicator

This group of objective functions evaluates the technical aspects of
the problem. Fig. 31 presents the proportion of technical factors used in
the reviewed papers which shows the renewable fractions (RF) and
dumped and excess energy (DEE) are the most commonly used objective
functions of this group [19,73,80]. Total energy generated (TEG) eval-
uates the total produced energy during the project’s lifetime [139], total

Fig. 26. Proportion of using single/multi-objective models for the combination
of sources.

Fig. 27. List of objective functions.

Fig. 28. The proportion of using Economic-related objective functions for the
combination of sources.

Fig. 29. Proportion of using Reliability objective functions for the combination
of sources.

Fig. 30. Proportion of using environmental-related objective functions for the
combination of sources.

O. Motamedisedeh et al. Renewable and Sustainable Energy Reviews 207 (2025) 114935 

15 



area required (TAR) and power balance (PB) which respectively assess
the total space needed for installation and the ratio of total generated
energy to total demand, are other common indicators in this group [55,
139]. Demand supply fraction (DSF) is also considered for evaluating of
the optimal combination by calculation of the ratio of hours of the year
in which generation is higher than demand to all hours of the year [139].

4.5. Social indicators

Besides the mentioned objective functions, social-related objective
functions represent another group that is less frequently used in the
literature. This group of indicators is usually used to determine the social
impact of renewable sources of energy. Memon et al. [12] considered job
creation (JC) including job creation in manufacturing, installation,
operation, and maintenance processes as objective functions to deter-
mine the optimum capacity of PV, Wind, and storage systems.

To determine the optimum combination of PV with other sources,
including Biomass, Wind, Hydro, and fuel-based plants for a country or
large area, the portfolio risk (PR) is considered as the objective function
[142]. Social acceptance (SA) and human development index (HDI) are
other objective functions considered in the literature [1].

5. Model parameters and assumptions

All the mathematical models include specific parameters. In this
section, the most used parameters and the most common assumptions
for the optimization of renewable source combinations are presented.

5.1. Export type

In most countries, in a grid-connected scenario, over-generation
could be exported to the grid at a predefined price, without any re-
striction on the amount and timing. However, there is a limitation in
other countries, especially those countries that are reaching high
renewable shares in their energy matrix [143]. In most Australian states,
the export limitation is 5 kW or 10 kW. In Germany, a country with over
one million PV systems linked to LV networks, individuals possessing
installed capacities below 30 kW are restricted from exporting (i.e.,
generating surplus beyond demand) more than 70 % of their total
installation [144]. In Hawaii, the over-generated energy can be exported
to the grid only during limited times of the day, and the exported energy
from 9 a.m. to 4 p.m. is not compensated [145].

While undeniably efficacious, implementing such an export limit
carries substantial economic repercussions for PV owners, potentially
serving as a disincentive for the adoption of new PV systems. In the
scenario with a limitation on export, the optimal capacity in the solution
tends to be lower than the optimum capacity in the scenario without any

export limitation [146]. The export limitation should be considered
alongside the energy pricing models. If the energy price is fixed during
the day, there is no difference between the exporting times, but in the
case of dynamic pricing, the exporting time, especially under the export
limitation scenario, plays a key role in the models’ results [147].

5.2. Storage strategy

By combining renewable sources and storage devices, several pos-
sibilities for prioritizing charging or discharging the battery and deter-
mining the source of energy for responding to the demand can be
defined [148]. The demand can be provided from the generated energy
by renewable sources, batteries, or the grid. Additionally, energy
generated over demand could be stored or exported to the grid. Deter-
mining the optimum source to respond to energy demand as well as the
optimum use of over-generated energy could impact the financial pa-
rameters of the project.

In the off-grid models, the stored energy should be used any time the
demand is higher than the generation rate, while in on-grid cases, three
main strategies could be adopted [149]. In the first strategy, with higher
priority given to the battery, the stored energy will be used any time the
demand is higher than generation, so the battery will charge and
discharge frequently. In the second strategy, with lower priority given to
the battery, the stored energy is used only during peak periods when
retailer prices are higher than off-peak prices [148]. In another strategy,
which combines the two other strategies, the optimum priority is
determined based on the time and energy pricing model [150]. Based on
the study [151], energy costs could be reduced by up to 57 % by using
the hybrid strategy and storing power during off-peak times and using
the stored power during peak times just by investing in the battery.

5.3. Energy pricing

Energy price is another important external parameter in the evalu-
ation of the optimum combination of energy sources. While in most
cases, a constant price is considered for evaluation, the fluctuations in
power prices impacts the feasibility of any energy generation system
[152–156]. The energy price can vary during the day based on pricing
policies, and there are three common pricing methods as presented in
Fig. 32: (1) time-of-use (TOU), where the energy price varies at different
times (Off-Peak, Mid-Peak, and On-Peak) during the day; (2) Critical
peak pricing (CPP), where the energy price depends on consumption
values; and (3) Real-time pricing (RTP), where the price varies from
time to time [151,157].

Pricing models directly impact the optimum solution and results, and
various policies are considered based on the pricing model. In the fixed
price model, the timing of energy exports does not influence the
outcome. However, in dynamic pricing models, export timing becomes
crucial—particularly in scenarios with export limitations. So, scheduling
battery charging and discharging during off-peak and peak times,
respectively, can significantly reduce energy costs [151,158].

5.4. Generation rate

The generation rate, which depends on several parameters including
facility characteristics and meteorological parameters, is another
important factor. The generation rate can be evaluated based on the
theoretical formulas [159] and the historical data [1].

While the generation rates fluctuate throughout the day, in some
research, such as feasibility studies, and linear and nonlinear optimi-
zation, a crisp value, equal to the average, minimum, or maximum of
historical values, is considered for the generation rate during specific
hours [142].

Alternatively, some research treats the generation rate as a stochastic
parameter or uncertainty value [160]. Arun, Banerjee [161] assume the
PV generation rate follows a normal probability distribution, and then

Fig. 31. Proportion of using technical-related objective functions for the
combination of sources.
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Monte Carlo simulation is used to optimize the size of PV and battery. A
combination of system dynamics and Monte Carlo simulations has been
used by Jeon and Shin [162] to address uncertainty in long-term
renewable energy system assessment. Moret, Codina Gironès [163,
164] used global sensitivity analysis to evaluate the impact of uncer-
tainty parameters on the decision-making results.

5.5. Energy demand

Energy demand can be considered a deterministic or stochastic
parameter as it is influenced by several factors [165]. There are several
software applications available such as Equest, EnergyPlus, Dest, and
Doe-2 that can be used to assess energy demand using physical models
[166]. These applications account for various building and environ-
mental characteristics, including but not limited to, the building’s
location and climate, solar radiation and shading, materials used in
construction, and non-geometric features such as heating and air con-
ditioning systems for prediction [167].

Mavrots et al., and Rezvan et al., treated demand as a stochastic
parameter in their models and addressed it using simulation models
[168,169]. In another study, demand was considered a fuzzy number
and solved by fuzzy programming [168,170]. [171,172] considered the
demand with uncertainty ranges and solved using RO.

The general energy demand includes two parts: dispatchable and
non-dispatchable, both of which come with uncertain characteristics
[173]. It is possible to program dispatchable appliances to run under
circumstances without sacrificing user convenience. Examples include
water heaters, dishwashers, washing machines, dryers, and air condi-
tioners [174]. Moreover, dispatchable appliances are divided into two
categories: equipment that can be adjusted for power and time.
Power-adjustable equipment can be flexibly adjusted within their rated
power range. Time-adjustable equipment, alternatively, operates at a
fixed rated power, but its operating time can be adapted based on de-
mand. This group is further divided into non-interruptible appliances
(such as vacuum cleaners and electric water heaters) and interruptible
appliances (such as washing machines, dryers, and dishwashers).
Important appliances such as security systems, lighting controls, and
refrigerators are considered non-dispatchable equipment. Attempting to
schedule these loads can pose challenges and potentially lead to signif-
icant disruptions to user demand [174].

5.6. Time step

Energy demand and generation rate can be evaluated on different
time steps from every second to monthly or even yearly. The model
complexity and accuracy of the results will increase by using smaller
time steps. The hourly time step is the most used [175].

5.7. Facilities degradation

Degradation is an inseparable characteristic of the facilities. In the
PV, every level of the system—cell, module, array, and so on—shows
signs of performance decline, with various causes and degradation
processes being visible at each level [176]. The primary external

elements that are linked to a decline in performance during field oper-
ations include temperature, humidity, precipitation, dust, snow, and
solar radiation. Degradation is caused by all of these factors at the array
level in addition to shading and module incompatibilities [177]. More
precisely, at the level of PV cells, corrosion, light-induced deterioration,
contact stability, and fractured cells are the main causes of performance
loss and potential failure. Degradation happens at the module level
because of hot spots, diode failures, glass breakage, delamination, bus-
bar failure, broken interconnects, front surface discoloration, and
moisture infiltration in addition to the reliability issues with the indi-
vidual cells [178].

The degradation of the battery is more challenging because it is
dependent on the operation strategy. Based on the Olmos, Gandiaga
[179], the battery degradation rate depends on different parameters
including Operating Temperature (The ambient temperature is referred
to as the operating temperature), Depth-of-Discharge (The difference in
State-of-Charge throughout the course of a single cycle), average or
Middle-State-of-Charge (deterioration resulting from a 10 % DOD be-
tween 90 % and 100 % SOC is typically thought to be different from
deterioration happening between 0 % and 10 % SOC), C-rate Charging
and Discharging (the normalized battery current compared to its orig-
inal capacity at Beginning-of-Life under nominal circumstances), and
full equivalent cycles (a 100 % DOD is represented by an FEC, which is a
complete cycle of charging and discharging).

While the battery degradation rate has uncertain characteristics, it is
considered an exact parameter. The yearly loss of capacity due to battery
aging is estimated 1 % by Gardiner, Schmidt [180] and 0.4 % by Linssen,
Stenzel [181].

In Mohamed, Best [182], instead of a linear degradation function, an
exponential function, extracted from the semi-experimental model by
Xu, Oudalov [183], with the exact rate considered for the battery
degradation rate, was used to account for both cycle and calendric aging
mechanisms. Hesse, Martins [184] also used non-linear equations for
modeling the battery degradation.

James, Alexander [185], proposed the Weibull distribution with
three parameters to estimate the battery life cycle and Aurbach, Zinigrad
[186] showed that the two-parameter Weibull distribution provides a
higher accuracy rate. Wang, Zhou [187] also showed that battery failure
with a threshold of 70 % degradation can be predicted with higher ac-
curacy using the Weibull distribution.

Some research used linearization of the state of health curve to
simplify battery degradation [187–189]. Xu, Zhao [190] and Aaslid,
Korpås [191] suggest a piecewise linear relaxation of the nonlinear DOD
degradation.

5.8. Installation space and budget

Installation space and investment budgets are other parameters that
are usually considered unchanged during the planning time scale.
Installation space is a crucial and an effective constraint, as solar ca-
pacity for households is limited by rooftop space. In this case, the
optimal capacities of PV and storage are determined based on the
available rooftop space for PV installation [143,192,193].

Fig. 32. Policies of energy price.
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5.9. Lifetime

The facility’s lifetime in the energy management system depends on
several external parameters, leading to different assumptions about
project lifetime in previous research. Usually, PV module manufacturers
provide a 25-year warranty against this loss at 80 % of nameplate ca-
pacity; 25 years is commonly used as the lifetime in the literature
[194–196]. While Lozano, Ramos [197], Alshammari, Samy [198], and
Samy, Sarhan [199] considered the PV life cycle to be 15 years, Khezri,
Mahmoudi [143] and Kiptoo, Adewuyi [136], assumed the PV life cycle
to be 20 years, Kakoulaki, Szabo [200], Saez, Boer [201] and Han,
Garrison [202] considered the 30 years for this parameter.

6. Solving techniques

To solve the optimum combination problem of PV with other sour-
ces, numerous techniques are proposed in the literature, which can be
categorized into five groups: Traditional Methods [31,105,106,108],
Single heuristic Algorithms [62,67,124], Combined Heuristic Algo-
rithms [33,44,51,86], Software-based techniques [70,91,96,103], and
hybrid models [39,83]. The techniques used in each group are presented
in Fig. 33, and Fig. 34 represents the distribution of these techniques.
Due to the complexity of such problems, particularly because of uncer-
tainty characteristics of parameters like demand, generation rate, and
degradation rate, single heuristic techniques are the most used in the
literature. Based on the results, GA and PSO are the most frequently used
techniques, at 23% and 17%, respectively. In the software-basedmodel,
HOMER is the most commonly used, and in the combined heuristic
models, SA + HS is the most frequently used combination [50,72,86],
while the PSO is combined more with other algorithms [33,39,44]. In
the traditional models, all techniques are used with approximately the
same frequency.

Each model comes with its own advantages and disadvantages which
are summarized in Table 2.

6.1. Traditional method

Traditional methods are mainly based on mathematical program-
ming and are usually used in problems that do not contain any stochastic
parameters. Mixed Integer Linear Programming (MILP) [31,33,106,108]
is the most commonly used traditional method and is used to determine
the optimum number of PV panels, wind turbines, diesel generators, or
batteries with predefined capacities. Mixed Integer Non-Linear Pro-
gramming (MINLP) is an evolved variant of MILP that considers the
non-linear attributes of parameters such as facility degradation, as well
as generation and demand rates [129]. Due to the complexity of integer
terms in mathematical models, some linear programming (LP) and Dy-
namic Programming [54] are used in some research by relaxing the

integer characteristic of parameters [82,92]. Khalaj et al. [203] used
linear programming to optimize the size and number of photovoltaic
panels, wind turbine capacity, and battery capacity by minimizing the
total levelized costs. Madhelopa et al. [204] also used linear program-
ming to determine the optimal size of a grid-connected PV–wind hybrid
system in South Africa. Nogueria et al. [205] applied linear program-
ming alongside simulation tools to determine the optimal size of PV
wind by considering the storage.

6.2. Single heuristic algorithms

Heuristic algorithms include a wide range of algorithms inspired by
natural phenomena and are used for NP-Hard problems where compu-
tation is costly [46]. Instead of providing the optimum solution, heu-
ristic algorithms search the solution space and propose a solution near
the optimum within a reasonable time [100]. These algorithms are
commonly used to determine the optimum size of facilities when the
demand or generation rates are considered as the stochastic parameters
[19]. The most used heuristic algorithms are presented in this section.

6.2.1. Particle swarm optimization (PSO)
PSO is a well-known heuristic algorithm based on the social behavior

of bird flocking or fish schooling and was introduced by Kennedy and
Eberhart in 1995 [81]. In PSO random combinations of parameters are
generated, analogous to locations of birds [24,30,40]. In each iteration,
the fitness function of each locations is evaluated. The location is then
updated by moving towards the local optimum (personal best) and the
best result (global best) is identified (see Fig. 35). The iteration con-
tinues until the stopping criterion is met, such as reaching a maximum
number of iterations or finding a satisfactory solution [206,207].

6.2.2. Genetic algorithm (GA)
The GA is another widely used heuristic algorithm that was inspired

by the process of natural selection and genetics and introduced by John
Holland in the 1960s [32]. To define the optimum combination of PV
and other renewable sources, as shown in Fig. 36, initially, the number
of possible combinations is generated randomly and considered as the
initial population. Then, in each iteration, the fitness function of each
solution (members of the population called chromosomes) is evaluated
based on the objective function, and the new generations are created
based on three operators: selection, crossover, and mutation on the
members (called parents) of the previous population to reach the best
solution [89,208–210].

6.2.3. Simulated annealing (SA)
The SA was inspired by the physical process of annealing in metal-

lurgy and introduced by Kirkpatrick et al., in 1983 [48]. To use SA to
determine the optimum combination of renewable sources, as shown in

Fig. 33. Solving techniques.
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Fig. 37, initially, a random combination is considered. In each iteration,
this combination is compared with a new one. During the initial itera-
tions, the proposed solution is replaced by new ones even if the fitness
function does not improve, but as time goes on, the replacement occurs
only if the fitness function of the new solution is better than the previous
ones [48].

6.2.4. Artificial bee colony algorithm (ABC)
The ABC was first introduced by Dervis Karaboga in 2005 and

inspired by the foraging behavior of honeybees [137]. It operates based
on four steps: 1) Initialization (randomly generate different combina-
tions of renewable sources as the initial population of bees). 2)
Employed bee phase (each bee searches the vicinity of its location to find
a better combination of facilities). 3) Onlooker bee phase (the optimum
location based on the fitness function is shared with all bees). 4) Scout
bee phase (search for new solutions in the search space and replace the
worse locations with new ones) [42].

6.2.5. Grey wolf optimization algorithm (GWO)
The GWO is inspired by the social behavior of grey wolves in search

of prey and was proposed in 2014 by Mirjalili et al. The GWO algorithm
operates in four steps: 1) Searching for Prey (each wolf searches for the
optimal solution, referred to as prey), 2) Encircling Prey (other wolves
surround the wolf that found the optimal solution), 3) Attacking Prey
(the encircling wolves then attack the prey by updating their positions
toward the optimal solution), and 4) Updating the Hunting Position (the
wolves’ locations are updated based on their current location and the
optimal solution found so far) [36,57].

6.2.6. Flower pollination algorithm (FPA)
The FPA is another heuristic algorithm introduced by Yang in 2012,

inspired by the process of flower pollination. Fig. 38 presents the process
of FPA for determining the optimum combination of sources, which
includes four main stages: 1) Initialization: the locations of flowers are
randomly generated across the solution space. Each location determines
a specific combination of renewable sources. 2) Global pollination: some
pollen is transferred between two flowers within a certain distance. 3)
Local pollination: The flowers’ positions are adjusted by a Gaussian
distribution around their current position. 4) Update: updating the lo-
cations of flowers and their fitness values [51,211,212].

Fig. 34. Proportion of solving models for the combination of sources.

Table 2
Advantages and disadvantages of solving techniques.

Solving
Techniques

Advantages Disadvantages

Traditional
Method

Easy to Implement
Results in a global optimum
solution can be used for multi-
objective models

Inappropriate for large-
scale problems
Low flexibility
Time-consuming

Single Heuristic
Algorithms

Efficient in calculation
Appropriate for complex
problems
Appropriate for multi-objective
case

Large number of iterations
in complex problems
Possibility of finding a local
optimum solution
Requires defining and
tuning algorithm
parameters

Combined
Heuristic
Algorithms

More accuracy in comparison to
a single heuristic algorithm
Appropriate for complex
problems

Large no of iterations in
complex problems
Possibility of proposing a
local optimum solution
Need to define and tune the
algorithm parameters

Software Based Easy to understand
Simple methods and convenient
to use

Low level of flexibility
limitation in time series
data type
Not suitable for multi-
objective models

Hybrid Model It gives better flexibility in
sizing the system

Need to spend time
modeming and combining
the methods
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Fig. 35. PSO process [73].

Fig. 36. GA process.

Fig. 37. SA process [48].

Fig. 38. FPA process.
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6.3. Combined heuristic algorithms

Besides single heuristic algorithms, their combination is also used to
reach a more appropriate solution. The algorithms can be combined in
series, as shown in Fig. 39, or in parallel, as shown in Figs. 40 and 41. In
parallel cases, the heuristic algorithms solve the problem separately and
then share their results in each generation. In other cases, algorithms
attempt to improve the results of another algorithm. Based on Fig. 39,
PSO and SA-based combination models are the most commonly used in
combined algorithms. Combined heuristic algorithms are also employed
for multi-objective cases, with the combination of MPSO and NSGA-II
being the most frequently used algorithm for solving such problems.
Fig. 41 presents the combination of PSO and GA, which uses only the
selection operator from GA and does not employ all the operators.

6.4. Software based

Various software solutions are available to identify the optimal mix
of renewable energy sources, as demonstrated by several articles that
have utilized the following programs. Among all the software, HOMER is
the most frequently used due to its advantages.

6.4.1. Hybrid optimization of multiple energy resources (HOMER)
HOMER was developed by the National Renewable Energy Labora-

tory (NREL) to determine the optimal combination of energy sources
based on the different parameters. Different energy sources such as
solar, wind, hydro, and biomass can be defined by HOMER to determine
the most cost-effective and reliable combination for the given location
[78,125,194]. The optimum result is proposed based on predefined
variables such as energy demand, resource availability, equipment costs,
and performance characteristics. Evaluationg the environmental and
financial impacts of changes in different parameters is a key feature of
HOMER [23,76,78,91,96,125,130].

6.4.2. RETScreen
RETScreen was developed by the Canadian government to determine

the optimum combination of renewable sources in terms of financial and
performance metrics. RETScreen incorporates a wide range of meteo-
rological information such as radiation rate and wind speed for various
locations. Sensitivity analysis of different parameters on the objective
functions and consideration of heat in addition to electricity are the
main characteristics of RETScreen [215].

6.4.3. EnergyPLAN
EnergyPLAN is a free software tool developed by the Sustainable

Energy Planning Research Group at Aalborg University in Denmark to
determine the optimum combination of renewable sources. As various
renewable energy sources, such as wind, solar, biomass, and hydro can
be defined in EnergyPLAN, it can be used to determine the optimum
combination of sources for various levels from individual buildings to a
region. The impact of the different variables on generation rate and
greenhouse gas emissions can be measured by EnergyPLAN [216].

6.5. Hybrid models

Besides the previous techniques to determine the optimum combi-
nation of renewable sources, hybrid models are also used in the litera-
ture. These models combine two or more different models to enhance
the efficiency of the results. The most used hybrid models include the
combination of Monte-Carlo Simulation (MCS) and heuristic algorithms.
In such a model, due to the complexity of the system and the existence of
some stochastic parameters, MCS is used to evaluate the fitness functions
[39,217]. both used the combination of PSO and MCS as shown in
Fig. 42.

7. Discussion and future direction

Combining PV with other sources of energy can achieve a reliable
supply of energy even in areas far from the grid. The combination of PV
with a wind turbine and a battery is a common approach used in the
literature. The optimum combination problem can be divided into two
different scenarios: grid-connected and off-grid. Energy flow manage-
ment is important in the grid-connected scenario, where installing the
battery plays a crucial role.

To solve the optimum combination problem, several factors should
be considered as main decision variables: PV panels, wind turbines, or
batteries with specific capacities, the optimum capacity of facilities, the
area occupied by the facilities, and their types. In some cases, the angle
of installation is also investigated.

Efficient flow management (such as charging the battery from the
grid during off-peak times and using the saved energy during peak
times) can reduce the generation cost by up to 57 %. Energy flow
management also plays an important role in battery lifetime. In energy
flow management, energy price and export limitation strategies are
important and should considered in the modeling. Since energy flow
management aims to sell over-generated energy at the highest price, the
pricing system (TOU, CPP, and RTP) can impact the optimum capacity.
Export limitation is preferred in some countries to increase grid stability.
If the system cannot sell more than the export limitation, its efficiency
may be lower, and as a consequence, energy costs may increase.

Fig. 39. Combination of PSO and SA [213].
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Among all the objective functions, which can be categorized into five
groups: reliability, financial, environmental, social, and technical, the
first two objectives are the most common. Reliability-related objective
functions are mostly used in off-grid cases, while financial-related
objective functions are predominantly considered in residential cases.

Based on the comprehensive review, the following future research
directions are suggested.

▪ While many previous studies have used hourly time steps for
predicting energy demand and generation, shorter time steps
yield more accurate results, especially for designing more
reliable off-grid systems.

▪ Due to significant fluctuations in energy demand and genera-
tion rates, these should be considered stochastic parameters
rather than constant values.

▪ In off-grid problems, where there is no reserve source of energy,
the demand spike points should be given a high weighting.

▪ The stochastic characteristics of generation rates are not well
addressed.

▪ The optimum export time with flexible prices is neglected in the
literature.

▪ The impact of natural events, such as blizzards, on the system
life cycle has been overlooked in previous research.

▪ The role of export limitations, which are legislated in several
countries, is often neglected in many articles.

▪ The cost imposed by energy shortages in off-grid problems is
not adequately addressed in previous research.

▪ The effect of energy prices on the optimum size of systems is
unclear in the literature.

▪ To minimize the energy cost, separate profiles for dispatchable
and non-dispatchable demand should be considered.

▪ Uncertainty characteristic of facilities degradation should be
considered in the modeling.

8. Conclusion

Renewable energy sources, often referred to as clean energy, have
become the predominant choice for new installations worldwide. In
2022, renewables accounted for 83 % of all new energy installations
globally, with PV systems making up 60 % of these renewable sources.
The variable nature of PV output necessitates integration with other
generation sources and storage solutions to enhance system reliability.

Fig. 40. A combination of GWO and SA [57].

Fig. 41. Combination of MPSO and GA [214].

Fig. 42. Combination of PSO and MCS [39].
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For this study, the PRISMA method was employed to select relevant
papers, and a text-mining model was used to identify the criteria for
comparison. These criteria include the type of grid connection, decision
variables, objective functions, location types, and solving techniques.

Based on the results, for low and medium-demand scenarios, the PV/
ES combination is most common, whereas, for high-demand scenarios,
wind turbines are frequently added to the mix. In off-grid situations, DG
serves as a backup to improve system reliability at minimal cost.

Financial considerations often dominate the planning process, lead-
ing to the widespread use of TAC, LOCE, and NPV as key metrics in the
literature. However, in off-grid applications, reliability metrics are also
crucial, either as part of the objective function or as constraints. When
incorporating DGs, environmental and technical factors are evaluated
within the objective frameworks.

To address the complexity of these systems, multi-objective optimi-
zation techniques are commonly employed, yielding efficient solution
frontiers. Heuristic algorithms, particularly PSO and GA, are favored for
their problem-solving efficacy. When combined algorithms are neces-
sary, SA, PSO, and HS-based models are preferred. Some articles also
used software-based techniques to solve the problem, with HOMER
being the most used compared to other software tools. As the scope of
this research is limited to the mathematical model for decision making
on the optimum combination of PV-based sources, other areas like
technical issues can be evaluated in future research.
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